Professor Max Chacón received English Prize for the 2011 best scientific publication

  • His paper deals with details about how a person's exposure to carbon dioxide affects cerebral blood flow. The information was provided by experimental British patients, as part of a collaborative work with the University of Leicester.

Dr. Max Chacón, professor at the Department of Informatics Engineering, Faculty of Engineering, was awarded the 2011 Jack Perkins Prize by the Institute of Physics and Engineering in Medicine (IPEM) of England, for his publication "Non-linear multivariate modelling Hemodynamics of cerebral hemodynamics with Autoregressive Support Vector Machines.”

 The award, which consists of  £ 250, is given annually to the best paper published during the year in the Medical Engineering & Physics journal, after a review carried out by a specialized committee that evaluates aspects such as the novelty and impact of the research.

 Dr. Chacon thanked the award and noted that this type of survey research confirms the good work being done in this University. "This is an important recognition for us, especially because our paper in the area of cerebral self regulation did not belong to the field of biomechanics, the journal’s strongest line of research, which could have been  the most possible winner”, he said.

The winner added that "all the profits for this recognition are indirect: for example, increasing the bonds of cooperation not only with the university we work with (Leicester), but also with other foreign institutions".

Significant contribution to medicine

The awarded paper is part of a specific area called cerebral hemodynamics. Professor Chacón  is working with two other researchers: Claudio Araya, former student of Master’s degree at the U. of Santiago, and Ronney Panerai from the University of Leicester (England).

 The cerebral hemodynamics acquires vital importance, because the estimates of international organizations involved in the field of health in Chile indicate that by 2025 more people will die from brain strokes than heart attacks. It is believed that the blood flow would be strongly linked to vascular accidents and also with a number of diseases, such as Alzheimer's, arteriosclerosis (carotid artery, mainly), head trauma, vascular dementia and diabetes, among others.

"Cerebral strokes are rising very strongly in the country and the causes are unknown. One thing that causes brain damage is the stronger flow in the arteries. It is known that the brain has a flow control system, and this means that, although the pressure varies in the body, the flow is almost constant in the brain. If there is little flow, one loses consciousness and, conversely, if there is a lot of flow an artery breakdown happens, “Chacón explained.

This mechanism, which constantly generates blood flow into the brain, is what researchers try to model through a data–based nonlinear system. This publication addresses one of the topics related to cerebral hemodynamics, because of the data given by the English researcher who provided the information based on 16 healthy patients who breathe in air with a small fraction (5%) of carbon dioxide (CO2) through a mask. The aim was to know how breathing in this gas affects the regulation of the blood flow in the brain.

"We proved that it is possible to represent changes in the inhalation of CO2 in a person by using this nonlinear model and this has metabolic implications, for instance. We know that breathing in a fraction of CO2 produces changes, which are equivalent to those experienced by people with diabetes, i.e. a metabolic problem, and these problems affect the blood flow in the same way as CO2 does it, “the researcher said.

Prize

The IPEM is an institution dedicated to joining professionals from the physical sciences, clinical engineering, the academic world, the health services and the industry, in order to share knowledge and advances in science and technology. Since 2000, it gives the Jack Perkins Prize in honor of his first journal’s editor, who died in 2000.