Académicos

Spanish

Artificial intelligence robot to contribute to agriculture in Chile

Artificial intelligence robot to contribute to agriculture in Chile

  • Dr Claudio Urrea, a specialist in robotics, has designed an intelligent device that is able to move autonomously through crops in order to perform different prevention and care tasks. 

 

Dr Claudio Urrea, a researcher at Universidad de Santiago, designed and implemented controllers for a mobile robot that will contribute to farming and improve national agriculture. He was able to design, simulate and evaluate the dynamic performance of different types of controllers. Thanks to these controllers, the mobile robot can be autonomous and its location can be traced at any moment.

According to Dr Urrea, professor at the Department of Electrical Engineering of Universidadd e Santiago de Chile, during the study they have been able to design, simulate and evaluate the dynamic performances of different types of controllers for the mobile robot. This has allowed them to compare the controllers and determine which one had the better performance. 

The researcher says that developing this mechanism could allow the mobile robot to perform crop care tasks. “A mobile robot with artificial intelligence designed and implemented by the Robotics Laboratory of the Department of Electrical Engineering and which is able to move autonomously between rows in a plantation, will have the capability, in the near future, to perform tasks like selective herbicide application, weed and pest control and others,” he says.

Impact on Chilean agricultural production

According to the Chilean Bureau for Agricultural Studies and Policies (ODEPA; in Spanish), Chile is constantly expanding its exports markets. Today, its main export destinations for food, forestry and agricultural products are the USA, the European Union, China, Japan, Mexico, South Korea, Brazil, the Russian Federation, Indonesia, Central America and India.

In this way, Dr Urrea’s research impact would allow to improve the national annual crop yields. “In the future, the impact of this research work will contribute to maintaining the crops all year round, even during the harvest season, when more time, human and economic resources are required. The effects of crop maintenance are directly reflected in the annual production,” he explains.

Dr Urrea says that this mobile robot is being modified to furnish it with more sensors so that it can perform more complex tasks.

The report of this study titled “Path Tracking of Mobile Robot in Crops” was published in the Journal of Intelligent and Robotic Systems (Springer). Patent requests for this technology have currently been filed with the support of the Department of Technology Management of Universidad de Santiago de Chile.

 

Translated by Marcela Contreras

Water decontamination through electricity and solar energy

Water decontamination through electricity and solar energy

  • In the context of a series of seminars ran by the Department of Environmental Sciences of the Faculty of Chemistry and Biology, Dr. Ricardo Salazar informed about the scope of the research on treating waters contaminated by textile and pharmaceutical industry effluents through electrochemical methods.

In order to inform about the progress made by the Laboratory of Environmental Electrochemistry’s research group, Dr. Ricardo Salazar gave the presentation “Elimination of persistent organic pollutants in water by using electrochemical methods,” in the context of a series of seminars organized by the Faculty of Chemistry and Biology.

The activity gathered together academics and students who learned about the research being conducted at Universidad de Santiago with regards to eliminating organic compounds in water through advanced oxidation electrochemical processes. Particularly, the presentation referred to the Fondecyt project called “Degradation of dye-containing effluents from textile industry through electrochemical oxidation,” in which Dr. Salazar is the responsible investigator.

The objective of the study is to decontaminate waters that contain dyes and additives by means of electricity and solar energy, avoiding the use of chemical reactants.

“Today, we are working on the treatment of real samples of textile industrial effluents. To do so, we have built a pilot plant to treat larger volumes of contaminated water. We are also testing new electrodes for the process and we have extended the contaminant spectrum to pharmaceutical industrial effluents,” Dr. Salazar says about the status of the study, in which Dr. Julio Romero, from the Faculty of Chemical Engineering of Universidad de Chile, takes part as a co-investigator.

SERC Chile

Thanks to his achievements in this field, Dr. Salazar has accepted an invitation to take part as an investigator in a FONDAP project for the Chilean Solar Energy Research Center, SERC Chile, an agency that seeks to become a world leader in solar energy scientific research, with a particular emphasis in developing the potential of the Atacama Desert, Chile.

“I was invited as an associate investigator in the research line of “Solar Water Treatment”, which is coordinated by Dr. Lorena Cornejo Ponce, tenured professor at the Escuela Universitaria de Ingeniería Industrial, Informática y Sistemas (EUIIIS) of Universidad de Tarapacá. The idea is to contribute to the treatment of persistent organic pollutant-containing waters and their treatment through Solar photoelectro-Fenton degradation”, he says.

Translated by Marcela Contreras

Researcher at the Department of Physics represents Universidad de Santiago at international conference

Researcher at the Department of Physics represents Universidad de Santiago at international conference

  • Dr Juan Escrig participated in the Fifth International Conference for Young Scientists and the Annual General Meeting of the Global Young Academy, held between May 25thand 29th, in Montebello, Canada. On the occasion, professor Escrig encouraged his peers to use all available means to disseminate their work among general public and other scientists. This conference gathers scientists from around the world, who are selected for the excellence of their science and their commitment to service. Currently, it has 200 members from 58 countries.

 

One of the goals of the Fifth International Conference for Young Scientists and the Annual General Meeting of the Global Young Academy (GYA), held between May 25th and 29th, in Montebello (Canada), was to provide an opportunity for reducing the science gap between developed and developing countries.

The activity gathers scientists from around the world, who are selected for their excellence demonstrated by their scientific achievements in their fields and their commitment to service. Currently, it has 200 members from 58 countries, representing the main regions of the planet.

GYA aims to empower and mobilize young scientists to address the principal issues they may face at their early careers. The idea is to reduce the science gap between developed and developing countries by connecting young scientists from different countries.

Besides, the organization maintains active links with international science organizations including the UN Science Advisory Board, the Global Network of Science Academies, the Global Research Council and the International Council for Science.

It publishes statements on international science policy and the research environment, what is important information for early-career researchers.

 

Universidad de Santiago

Universidad de Santiago was represented by Dr Juan Escrig, researcher at the Center for the Development of Nanoscience and Nanotechnology (CEDENNA, in Spanish), at the Department of Physics.

 

According to Dr Escrig, the participants in the activity discussed that “a key challenge for researchers is the limited access to research software or scientific equipment due to the lack of funding for acquiring licences and/or new equipment.”

“This jeopardizes the quality of the research work, causes the use of pirated software and, in extreme cases, brain drain, and it is closely related to another problem: the need to improve the research environment in the institutions, something that would allow young scientists to fully develop their potential,” he adds.

He thinks that many women have not received yet the support that they require to succeed in their scientific careers.

And he also thinks that in general, institutions do not compensate the time that young scientists devote to promoting science.

Some guidance

Professor Escrig gives some guidance for young scientists at Universidad de Santiago, so that they contribute to the country development.

“The idea is that they participate in scientific education and in outreach activities at schools and universities of the country, because the benefits of science cannot be disseminated without the participation of and the communication among scientists, citizens, politicians and the media,” he says.

“Young scientists at the University should organize themselves, for example, through the INDI, the Group of Researchers for Development and Interdisciplinarity of Universidad de Santiago, because in this way, they will be in a unique position to take on roles in providing scientific advice for the country,” he adds.

“INDI scientists stand out not only for their excellent research work, but also for their commitment to bring together scientists and politicians to face the problems of the country. Also, I think that we require a mentoring network for young women scientists,” he concluded.

Translated by Marcela Contreras

Maqui berry to combat side effects of psychotropic drugs

Maqui berry to combat side effects of psychotropic drugs

  •  According to Dr Leonel Rojo, researcher at the Faculty of Chemistry and Biology, the use of Aristotelia Chilensis allows to reverse the problems caused by the use of psychotropic drugs, like obesity, diabetes and cardiovascular diseases.

 

 

Dr Leonel Rojo, researcher at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, found that people using antipsychotic drugs for 6 continuous months exponentially developed obesity, insulin resistance, dyslipidemia and cardiovascular diseases.

According to the Chilean National Institute of Public Health, clozapine and olanzapine have been the most commonly imported psychotropic drugs in Chile in the past ten years for their low cost and effectiveness for the treatment of psychosis or schizophrenia in adult patients and the treatment of attention deficit disorder, autism, Asperger syndrome and bipolar disorders in children.

However, the side effects that they produce alerted Dr Rojo, as he found that antidiabetic drugs did not help patients to overcome their problem. He started looking for solutions, and after testing a Chilean product in laboratory, in 2012 he found an answer: Maqui berry (Aristotelia Chilensis), a small tree that grows in the center and the south of Chile.

“Descubrimos en Estados Unidos, que uno de sus compuestos es fuertemente antidiabético, así que pensamos que el maqui puede prevenir la obesidad que es causada por antisicóticos y descubrimos que previene la acumulación de lípidos en las células en pacientes tratados con estos fármacos”, explica el experto en toxicología.

“In the USA, we found that one of the maqui components is a strong antidiabetic compound, so we thought that maqui could prevent the obesity caused by antipsychotic drugs. We found that it reduces lipid accumulation in the cells of patients who are treated with these drugs,” Dr Rojo explains.

Research team

Dr Rojo has an extensive scientific experience. His work has been recognized by the New York Society of Cosmetic Chemists and the American Society of Pharmacognosy, after he discovered an anti-aging technology based on Pouteria Lucuma bioactive compounds.

The project has the collaboration of Dr Ilya Raskin, of Rutgers University, New Jersey (USA); a research team of Universidad de Chile, led by Dr Pablo Gaspar; and the Hadassah Academic College of Jerusalem.

The study is called “Evaluation of Anthocyanins from Maqui Berry in the Prevention of Clozapine-Induced Hepatic Lipid Accumulation, Activation of SREBP1c Target Genes and Obesity” and it is funded by a Fondecyt Initiation Project in the field of psychotropic drugs and metabolism.

Current situation and expectations

Currently, Dr Rojo and his collaborators continue working in the laboratory at the Faculty of Chemistry and Biology of Universidad de Santiago. At this stage, they are trying to elucidate how the natural maqui components (called anthocyanins) prevent lipid accumulation and the metabolic problem associated to the use of antipsychotics.

 

The researcher expects to conclude his work by the end of 2017 with a continuity project that allows using the product in patients. Dr Rojo says that this project will benefit the country, because he thinks that the product would not be expensive; and it would also be good for national economy, because people who collect and sell maqui are eager to find new uses for it.

Today, the product is considered as a super fruit and it is mainly commercialized in the United States. Besides, there are already companies interested in the project and in getting involved in it.

 

Translated by Marcela Contreras

Universidad de Santiago’s professor to head the Computational Intelligence Society Chilean Chapter

Universidad de Santiago’s professor to head the Computational Intelligence Society Chilean Chapter

  • Dr. Gonzalo Acuña was elected president of the Chilean representation at the Computational Intelligence Society, which is part of the world’s largest professional and technical association in this field. Also, professor Acuña became Chile’s representative at the Latin American Computational Intelligence Society.

An academic of Universidad de Santiago’s Department of Informatics Engineering, Dr. Gonzalo Acuña Leiva, will preside for two years the Computational Intelligence Society (CIS) Chile Chapter, which is part of the Institute of Electrical and Electronics Engineers (IEEE), the world’s largest professional and technical association dedicated to advancing technological innovation and excellence for the benefit of humanity.

Dr. Acuña was elected president of the Chilean representation of the IEEE-CIS, one of the world´s most renowned and traditional organizations, as it was the first organization founded in this field after the American chapters of computational intelligence and is made up of, at least, sixty academic members from different universities.

“Computational Intelligence relates to the ability developed by computers, for example, to imitate nature or biological processes,” Dr. Acuña says, pointing out that this field includes neural networks and genetic algorithms inspired by biological processes or the animal world, like the ants’ methods to solve problems or the flight of birds.

Although the IC concept seems to be related to Informatics, Dr. Acuña says that it has to do with dynamical systems and mathematical models and not necessarily with programming.

Computational Intelligence is not Artificial Intelligence

Dr. Acuña says that the concept of Computational Intelligence should not be taken for Artificial Intelligence, as the former refers to “mathematically modeled ideas that help to solve optimization problems and other engineering works. It refers to mathematical tools that are commonly used by computer programmers to solve different problems, as they can be applied to all imaginable fields.”

Dr. Acuña has been working in this field for several years and he has specialized in the study of neural networks, interconnection systems inspired by the animal nervous system functioning and SVM (Support Vector Machines), a group of supervised learning algorithms that can be applied to different areas.

At present, the academic is leading a Fondef project where he is applying this knowledge to mining industry.

“With this Computational Intelligence tools we are building predictive models for the availability of physical assets in mining industry, like shovels, large trucks or the enormous equipment required for mining operations that involve high maintenance costs. Therefore, if we are able to anticipate the equipment availability, mining industry can improve preventive maintenance and reduce costs,” Dr. Acuña explains.

Youngsters and Latin America

About his recent nomination as president of the IEEE-CIS Chile Chapter, Dr. Acuña says that the efforts are oriented to promote the Chapter and to motivate young people through CI Summer Schools, which are “the ideal opportunity for students preparing their dissertation work to participate, as leading figures in this field give presentations and many of our members offer tutorial sessions. It is the occasion when we meet as a community.”

Finally, there is also news about this field at a regional level, as two weeks ago, in a congress held at Bariloche, the Latin American Computational Intelligence Society was founded, where Dr. Acuña and an investigator from Universidad de la Frontera were appointed national representatives.


Translated by Marcela Contreras
 

Professor at Universidad de Santiago recognized as the best reviewer by international scientific journal

Professor at Universidad de Santiago recognized as the best reviewer by international scientific journal

  • Dr Manuel Azócar, professor at the Department of Chemistry of Materials of Universidad de Santiago was recognized as the best scientific publication reviewer in the Material Science Engineering C international journal. The expert is also a reviewer in other six different journals in this field in the United States, Asia, Europe and Latin America.

 

Dr Manuel Azócar, professor at the Department of Chemistry of Materials of Universidad de Santiago was recognized as the best scientific publication reviewer in the Material Science Engineering C international journal, for reviewing around 30 papers in one year.

He is also a reviewer for other six journals in the field for which he usually evaluates the standard: an average of 5 article submissions. However, for the journal that recognized him, he evaluated an outstanding number of papers, so it demanded a very intense work. He expressed his gratitude for this recognition and said that he has reviewed works from the United States, Asia, Europe and Latin America.

Dr Azócar has also published in the Material Science Engineering C journal since 2014 before becoming a reviewer.

He became a reviewer on his own merit, studying materials with potential medical applications, specifically metals like copper and silver, which have antibacterial properties to combat bacteria, viruses and fungi, among other microorganisms.

All the articles undergo an expert “blind review”. This means that the author does not know who is evaluating his/her article. The committee is made up of two reviewers and they decide if the article is accepted or not. If there is a tie, they may call for a third opinion.

Dr Azócar says that the process for the approval of scientific publications is very rigorous. “I rejected 60% of the articles. This usually happens, because in science, the standards to accept articles are very strict. Most of the article submissions are usually rejected for writing problems, poor contributions, and poor quality and lack of novelty,” he explains.

Scientific connectivity

The Materials Science and Engineering C: Materials for Biological Applications journal can be digitally accessed and Universidad de Santiago has subscribed to it, so academics can log in through the university account.

He says that information at a scientific level is increasingly democratising. “Many things have changed in science, like open access articles (PDF) which publication costs are paid by the authors and networking sites, like ResearchGate, a sort of “Facebook” for scientists,” he adds.

Goals and expectations

Dr Azócar expects to continue both publishing and reviewing at an international level. “Being considered at a global level is very interesting. They should know that there are people in Chile with a voice to give opinions on specific issues,” he explains.

He says that the journal has helped him in his professional positioning and career. “All these references help scientists to be good professionals, to be formally recognized and valued by the university. Besides, this benefits my future research work, because it gives me more credibility in my field of work. In the scientific career, the scientist is constantly growing up in time,” he concludes.

Translated by Marcela Contreras

Academic studies brain development process in human embryos

Academic studies brain development process in human embryos

Providing basic knowledge about human cerebral cortex development at embryonic and early fetal stage is the goal of the research project led by Dr. Lorena Sulz, which will be conducted during the next three years.

According to reports, some psychiatric disorders, such as schizophrenia and bipolar disorder, begin during embryonic development. Most of the studies on this topic have been conducted on animal samples, due to ethical restraints and limited access to human embryos. This is the reason why the field of human embryology related to neurology is an area which has not been thoroughly explored.

In this context, Dr. Lorena Sulz, academic of Universidad de Santiago’s School of Medicine, will carry out the study “Role of nitric oxide in human cerebral cortex morphogenesis”, which intends to gather critical information about the mechanisms involved in the development of nerve cells during the first weeks of pregnancy.

The study will be conducted during the next three years and is funded by the Scientific and Technological Research Department (Dicyt) of Universidad de Santiago. It is a unique study as it is the first time that this branch of embryology involves human samples, which were obtained from de Institution’s Embryo-Fetology collection.

The idea is to gather basic knowledge about this topic in order to explain if the presence of nitric oxide is also essential for producing new nerve cells in human cortex, as it has already been proved in animal samples and in neuronal regeneration processes, both in human beings and mice. “We want to know if this molecule is expressed in the cerebral cortex being developed and identify in what areas and at what stages it is present. In this way, we can infer approximately the process in which it is involved,” the academic explains.

The study will be carried out in two stages. The first one will completely focus on the morphological analysis of cells and embryos being used. This stage, which is under execution at this moment, will allow describing the human cerebral cortex development process. After identifying each phase, the second stage will allow identifying cells that produce nitric oxide and the process in which it would be involved.

The study will be conducted at the Embryology Unit of the Faculty of Medical Sciences, Universidad de Santiago, led by Dr. Jaime Pereda, the project`s co-investigator, M.S. Carlos Godoy and Dr. Sulz. The three professionals, experts in their areas of research interest, complement each other’s work in a way that has helped to a good execution of their projects. “In general, the three of us work together because we use very similar techniques: only the molecule and the body organ of interest are different. We have adjusted to each other very well,” Dr. Sulz adds.

However, the expectations are long-term. The research seeks to establish some theoretical basis for human cerebral cortex development, in order to develop new studies on this topic. The results will be presented in different papers in specialized publications and in different congresses and conferences.

Finally, Dr. Lorena Sulz expects that during the research, they will be able to prove that nitric oxide takes part in human cerebral cortex development, just like it does in laboratory animals. “As it is basic science, it only provides a knowledge base. But if nitric oxide is known to be significant in cerebral cortex development, further care should be taken so as not to interrupt this process during the critical period, preventing potential malformations. This additional knowledge could be a contribution to prenatal care,” the researcher concludes.

Translated by Marcela Contreras

New innovative instrument to evaluate Early Teacher Training

New innovative instrument to evaluate Early Teacher Training

  • Professor Saúl Contreras, academic at the Department of Education, is developing the Fondecyt Project “Early Teacher Training for Science Education” that seeks to analyze the academic performance of 1,200 Teaching Training Program students across the country to contribute with an explanatory model on how future teachers internalize and implement their curricular teaching knowledge.
  • According to professor Contreras, this instrument will put a strain on the Inicia Test,” because the latter evaluates future teachers at the end of their training. “Our idea is to evaluate students during all their training process,” to obtain a comprehensive and timely knowledge about it.
  • Professor Contreras presented the first results of this study at international conferences in Tarragona and Barcelona, Spain.

The quality of education is today a core topic in the public policies debate and it has become one of the key demands of different social sectors.

But this quality is affected by different variables, like the good or poor education received by those who will be responsible for teaching new generations, that is to say, Early Teaching Training, (FDI, in Spanish). This is why Dr. Saúl Contreras, PhD in Education of Universidad de Santiago de Chile is working on the project “Early Teaching Training for Science Education”, funded by Fondecyt, that seeks to create a model and an instrument to evaluate the training process of pre-service teachers. As a result, this would allow training institutions to review the decision making process regarding training matters.

The study considers a national sample of 1,200 trainee teachers in math and experimental science specializations. The research team led by Dr. Contreras will do the corresponding follow up for four years.

“We seek to create a model and an instrument to explain how students acquire teaching competences and skills. In the context of the study, we are going to provide important data to each participating institution,” Dr. Contreras says. He adds that this information will be very useful to correct the course of early teacher training.

“It will put a strain on the INICIA Test”

Professor Contreras claims that among the side effects of this study, “it will put a strain on the Inicia Test,” the voluntary test to evaluate graduate teachers in different contents. “It does not make any sense to expect a quality education by thinking that we can achieve it just through measuring instruments like Simce, PSU or the Inicia Test.”

Professor Contreras also stresses that the Inicia Test evaluates pre-service teachers at the end of their training programs. “We propose to have a systematic assessment instrument during the whole training process and not only at the end of it. Because we should ask ourselves if the results of the Inicia Test are not good and the students already graduated, what happen to them? Should we give them remedial courses? It is too late to do it”, he answers.

For all the above, the instrument studied by this researcher at Universidad de Santiago de Chile becomes essential, because, according to Professor Contreras, it is not about preparing students like pre-university schools do: it is “creating and applying an instrument to evaluate future teachers at certain time points during their training. And this is a decision of the institutions that internally choose to help their students.”

Regarding the assessment tests, Dr. Contreras says that he totally agrees with their application, “otherwise it would be impossible to know how we are doing,” but these instruments should be developed “together with the subjects and starting with them, because they also need to be relevant,” he explains.

Professor Contreras is so convinced of the effectiveness of his proposal that he does not doubt that, after applying the assessment instrument for four years, it may be applied at a national level, in the context of a public policy. He thinks that it “can also be implemented in the technical- professional formation.”

Although the first stage of collection of data was finished only a few weeks ago- with the collaboration of teacher training programs of universities from Arica to Punta Arenas- professor Contreras presented the first results of this project at the International Congress of University Teaching and Innovation (CIDIU, in Spanish), held at Tarragona, Spain and then, at the Edulearn VI International Conference on Education and New Learning Technologies, in Barcelona, Spain.

These first steps allow seeing significant changes in future teachers’ training that, in the end, will affect the quality of education.

 

Translated by Marcela Contreras

Professors at Universidad de Santiago presented an innovative teaching approach

Professors at Universidad de Santiago presented an innovative teaching approach

  • Claudia Matus and Bárbara Ossandón, both professors at the Physics and Mathematics Teaching program of Universidad de Santiago de Chile, presented a novel initiative for the academic field at the International Educational Summit 2016: XII Conference on Higher Education Management.

 

 


Claudia Matus and Bárbara Ossandón, both professors at the Physics and Mathematics Teaching program of Universidad de Santiago, had a remarkable participation at the International Educational Summit 2016: XII Conference on Higher Education Management.

This activity has become one of the most important meetings for exchanging experiences at a management level among higher education institutions in Latin America, with the participation of renowned international experts.

The conference was held at the Casa Central of Pontificia Universidad Católica de Chile and professors Matus and Ossandón presented their work “Comunidad Práctica de Aprendizaje como elemento clave de gestión en el rediseño curricular de una carrera de pedagogía.”

“We designed a new innovative curriculum that based its pedagogical principles on a spiral modular design that involves the integration of theory and practice and is focused on the classroom activity and the student,” professor Ossandón explained.

She highlighted “the need of understanding curriculum management through an interdisciplinary team work and professional management. This means to strengthen the role of the head of the program and
distribute his/her tasks in four coordinations: practice, teaching, laboratories, and outreach and engagement. This last coordination has the purpose of providing feedback on the curriculum.”

“This interdisciplinary learning community that works collaboratively is made up of physics and mathematics teachers focused on didactics; an anthropologist, and other professionals,” she said. It is a group of committed people working in an environment where interdisciplinary collaborative work is usually understood as the sum of individual works,” she said.

“The strength of this initiative is the new design of the curriculum of the Physics and Mathematics Teaching program that allowed us to be accredited for seven years,” she added.


Conclusions

“What we want to share is the idea that, to achieve curriculum innovation, the line-up of collaborative interdisciplinary work teamsis very important in order to make the program management a profesional activity, as well as to encourage constant self-evaluation, what will result in constant improvement,” Professor Ossandón said.

The conference “helped us to validate the pedagogical principles of our program according to the different presentations given that addressed the latest trends in education that, in turn, allowed us to validate our own community, our team made up of the four coordinations. Besides, it enriched even more our pedagogical learning proposal,” she said.

“This activity is also an example of learning practice community,because on this occasion we learned about an education research network. This network is formed by universities in four continents and

it was created by the initiative of different communities, as the most advanced way of distributed leadership in the knowledge society, as Hargreaves said. This conference is a learning practice community
itself,” she added.

“We propose a professional, pro-active approach, where the head of the program can conduct research works with collaborative teams in the medium and long term,” she concluded.


Translated by Marcela Contreras

Researchers at Universidad de Santiago revealed that the extension of the hole in the ozone layer reached record levels in December

Researchers at Universidad de Santiago revealed that the extension of the hole in the ozone layer reached record levels in December

  • After four weeks of work in the Antarctica, Dr Raúl Cordero and Dr Alessandro Damiani, both researchers at the Department of Physics of Universidad de Santiago de Chile, were able to confirm that the extension of the hole in the ozone layer over the Antarctica reached more than 10 million km2 in December 2015, i.e. more than twice the average of that period in the past three decades.

The measurements were carried out during a campaign in the Antarctic Circle in the context of the Antarctic Scientific Expedition of the Chilean Antarctic Institute (Inach, in Spanish). Dr Raúl Cordero and Dr Alessandro Damiani, both professors at Universidad de Santiago de Chile, were part of the expedition.

The ozone measurement campaign at the Antarctica started on November 15th and it continued until mid-December. Four researchers at Universidad de Santiago travelled to the heart of the White Continent, where about 600 kg of the best radiometric equipment available were sent.

The expedition was supported by Inach, what allowed the researchers to work at “Unión Glacier” Joint Polar Research Station located at 79 degrees South latitude, at about 1000 from the South Pole.

Constant monitoring

In spite of the negative results of this year, Dr Cordero expects that a process to recover the ozone layer starts in the short term, as a result of the actions taken worldwide to reduce the emissions of polluting gases. However, the information gathered highlights the need of adopting mitigation policies and conducting a constant monitoring of the area.

According to Dr Cordero, “the ozone layer depletion is mainly caused by the presence of ‘ozone destroying” chemicals in the polar stratosphere. These substances are generated by the industrial activity in mid-latitudes.”

Although these substances are everywhere in the planet, high latitudes are the most impacted areas by the layer depletion or destruction, particularly the Antarctica. During the southern spring, this area is affected by a massive destruction of the stratospheric ozone as a result of the particular weather conditions there.

According to the researcher, the ozone depletion process between September and December is favored by the low temperatures in the Antarctic stratosphere and by the Antarctic polar vortex that prevents the ozone from other latitudes from closing the hole.

“When temperatures increase at the end of spring, the ozone massive depletion stops and the weakening of the polar vortex allows the ozone from other latitudes to close the hole. The bad records this year are probably the result of unusually low stratospheric temperatures during last spring,” Dr Cordero said.

Recovery of the ozone layer

In spite of the negative results of this year, Dr Cordero expects that a process to recover the ozone layer continues until the middle of this century due to the actions taken worldwide to reduce the emissions of polluting gases. However, the information gathered highlights the need of adopting mitigation policies and conducting a constant monitoring of the area.

It is also worth to mention that this study included comparisons with databases of other months. According to this, the hole in the ozone layer reached 28 million kmin October, the fourth highest record since the satellite data is available. 

Dr Cordero also highlights the relation between ozone depletion and climate change. “The changes in the hole in the ozone layer could affect the energy balance of the Antarctica. Ozone depletion or exhaustion has affected the temperature of the stratosphere and it correlates with wind and surface temperature variations detected in the Antarctica in the past decades. Therefore, a better understanding of the relation between climate change and the hole in the ozone layer is required. This is the ultimate goal of our work,” he concluded.

 

Translated by Marcela Contreras

Pages

Subscribe to RSS - Académicos