Investigación

Undefined

Earthquakes and volcanic eruptions could be predicted by using analysis and satellite imagery

Earthquakes and volcanic eruptions could be predicted by using analysis and satellite imagery

  • Dr. Alonso Arellano, academic at the Department of Metallurgical Engineering, conducts a Dicyt research which seeks patterns that allow the projection of a possible earthquake or volcanic eruption of great magnitude, through the analysis of high-resolution satellite images.


Predicting an earthquake is one of the highest aspirations of the researchers in this field worldwide. In a country like Chile, which is considered highly seismic, this search has become an essential need. In this context, a new process for early detection of earthquakes arises: the analysis of high resolution satellite images.

Dr. Alonso Arellano conducts a project funded by the Department of Scientific and Technological Research (Dicyt) in this field of research. He felt motivated in 2004 while he was doing a Ph.D. at the State University of Russia and subsequently investigated related phenomena, such as the case of the Popocatepetl volcano, located in the south of Mexico.
Through his project, called "Use of high-resolution satellite images for the study of strong earthquakes and related phenomena", additional information is sought to identify more patterns and better statistics.

Based on this information, associated phenomena could be addressed, through the analysis of high resolution satellite images for earthquake precursors. "To achieve this, images are analyzed before, during and after the earthquake. Then, each image is scanned in order to find typical structures, veins, fractures, faults, and thus confirm existing or new patterns,”  Arellano said.

According to this researcher, the study is based, on the assumption that the stress of the Earth’s crust can be seen in the form of lines. "The lines are visible when processing high resolution images captured by satellites, although they develop over 30 kilometers deep. For this reason, these images have become an important tool to detect areas of potential earthquakes,” he remarks.

Although in the last decade many similar investigations have been carried out by the international group led by Dr. Arellano in Chile, and by Dr. Dimitar Ouzounov in the United States, this study will differ in two aspects:  first, the use of the Chilean satellite FASAT Charlie, if the agreement with the Air Force, through the Aerophotogrametric Service, becomes effective. The second aspect is the use of software for the study of images, developed at the University of Santiago, Adelgeo.

Dr. Arellano’s collaborators are Ph.D. students in Engineering Science (Automatic and Process specializations) and the Master’s degree in Geomatics. As noted by professor Arellano, "they play an important role, because their motivation to do new things nourishes the investigation."

By Lorena Jimenez

Water decontamination through electricity and solar energy

Water decontamination through electricity and solar energy

  • In the context of a series of seminars ran by the Department of Environmental Sciences of the Faculty of Chemistry and Biology, Dr. Ricardo Salazar informed about the scope of the research on treating waters contaminated by textile and pharmaceutical industry effluents through electrochemical methods.

In order to inform about the progress made by the Laboratory of Environmental Electrochemistry’s research group, Dr. Ricardo Salazar gave the presentation “Elimination of persistent organic pollutants in water by using electrochemical methods,” in the context of a series of seminars organized by the Faculty of Chemistry and Biology.

The activity gathered together academics and students who learned about the research being conducted at Universidad de Santiago with regards to eliminating organic compounds in water through advanced oxidation electrochemical processes. Particularly, the presentation referred to the Fondecyt project called “Degradation of dye-containing effluents from textile industry through electrochemical oxidation,” in which Dr. Salazar is the responsible investigator.

The objective of the study is to decontaminate waters that contain dyes and additives by means of electricity and solar energy, avoiding the use of chemical reactants.

“Today, we are working on the treatment of real samples of textile industrial effluents. To do so, we have built a pilot plant to treat larger volumes of contaminated water. We are also testing new electrodes for the process and we have extended the contaminant spectrum to pharmaceutical industrial effluents,” Dr. Salazar says about the status of the study, in which Dr. Julio Romero, from the Faculty of Chemical Engineering of Universidad de Chile, takes part as a co-investigator.

SERC Chile

Thanks to his achievements in this field, Dr. Salazar has accepted an invitation to take part as an investigator in a FONDAP project for the Chilean Solar Energy Research Center, SERC Chile, an agency that seeks to become a world leader in solar energy scientific research, with a particular emphasis in developing the potential of the Atacama Desert, Chile.

“I was invited as an associate investigator in the research line of “Solar Water Treatment”, which is coordinated by Dr. Lorena Cornejo Ponce, tenured professor at the Escuela Universitaria de Ingeniería Industrial, Informática y Sistemas (EUIIIS) of Universidad de Tarapacá. The idea is to contribute to the treatment of persistent organic pollutant-containing waters and their treatment through Solar photoelectro-Fenton degradation”, he says.

Translated by Marcela Contreras

Researchers study the effect of global warming on Antarctic mosses

Researchers study the effect of global warming on Antarctic mosses

  • Through a Fondecyt Project led by Dr. Gustavo Zúñiga, a research team of Universidad de Santiago is carrying out measurements of the mosses at the Collins Glacier and the Ardley Peninsula, in order to analyze the impact of global warming on these populations and identify their tolerance mechanisms to resist environmental changes.

 



 

 

 

 

Dr. Gustavo Zúñiga, researcher at Universidad de Santiago; Marisol Pizarro, a graduate student of the Biotechnology PhD program of the Faculty of Chemistry and Biology, and  Gustavo Zúñiga-Líbano, an undergraduate student of the Biotechnology Engineering Program of the Faculty of Engineering, are now at the “Profesor Julio Escudero” base of the Chilean Antarctic Institute (INACH, in Spanish) studying the impact of global warming on Antarctic mosses in the context of the Fondecyt Project "Metabolomic responses of the Antarctic mosses Sanionia uncinata and Polytrichastrum alpinum to global warming".

While the researchers are in the Antarctica, they aim to establish a baseline with regards to the effect that global warming is having on the region and, particularly, to identify the environmental tolerance mechanisms of the Sanionia uncinata and Polytrichastrum alpinum mosses. In order to reach these goals, the study involves collecting samples and measuring the environmental variables in the Collins Glacier and the Ardley Peninsula.

“We must consider that the Antarctic Peninsula has been one of the areas most affected by global warming; in spite of this, there are no studies up to date regarding the response to this phenomenon at a molecular level and there are no studies that correlate the stress conditions that these species are enduring in the Antarctica, either,” Dr. Zúñiga explained. The study aims to describe the physiological and molecular changes caused by the increase in temperature, UVB radiation and the availability of water for these mosses.

The members of the Plant Physiology and Biotechnology Laboratory of the Department of Biology at the Faculty of Chemistry and Biology; Hans Köhler, a graduate student of the Biotechnology PhD program, and Dr. Rodrigo A. Contreras- who traveled in December to the Unión Glacier polar scientific station to work in the project by studying the lichens of the area– have also contributed to this study.

 


 

Professor at Universidad de Santiago recognized as the best reviewer by international scientific journal

Professor at Universidad de Santiago recognized as the best reviewer by international scientific journal

  • Dr Manuel Azócar, professor at the Department of Chemistry of Materials of Universidad de Santiago was recognized as the best scientific publication reviewer in the Material Science Engineering C international journal. The expert is also a reviewer in other six different journals in this field in the United States, Asia, Europe and Latin America.

 

Dr Manuel Azócar, professor at the Department of Chemistry of Materials of Universidad de Santiago was recognized as the best scientific publication reviewer in the Material Science Engineering C international journal, for reviewing around 30 papers in one year.

He is also a reviewer for other six journals in the field for which he usually evaluates the standard: an average of 5 article submissions. However, for the journal that recognized him, he evaluated an outstanding number of papers, so it demanded a very intense work. He expressed his gratitude for this recognition and said that he has reviewed works from the United States, Asia, Europe and Latin America.

Dr Azócar has also published in the Material Science Engineering C journal since 2014 before becoming a reviewer.

He became a reviewer on his own merit, studying materials with potential medical applications, specifically metals like copper and silver, which have antibacterial properties to combat bacteria, viruses and fungi, among other microorganisms.

All the articles undergo an expert “blind review”. This means that the author does not know who is evaluating his/her article. The committee is made up of two reviewers and they decide if the article is accepted or not. If there is a tie, they may call for a third opinion.

Dr Azócar says that the process for the approval of scientific publications is very rigorous. “I rejected 60% of the articles. This usually happens, because in science, the standards to accept articles are very strict. Most of the article submissions are usually rejected for writing problems, poor contributions, and poor quality and lack of novelty,” he explains.

Scientific connectivity

The Materials Science and Engineering C: Materials for Biological Applications journal can be digitally accessed and Universidad de Santiago has subscribed to it, so academics can log in through the university account.

He says that information at a scientific level is increasingly democratising. “Many things have changed in science, like open access articles (PDF) which publication costs are paid by the authors and networking sites, like ResearchGate, a sort of “Facebook” for scientists,” he adds.

Goals and expectations

Dr Azócar expects to continue both publishing and reviewing at an international level. “Being considered at a global level is very interesting. They should know that there are people in Chile with a voice to give opinions on specific issues,” he explains.

He says that the journal has helped him in his professional positioning and career. “All these references help scientists to be good professionals, to be formally recognized and valued by the university. Besides, this benefits my future research work, because it gives me more credibility in my field of work. In the scientific career, the scientist is constantly growing up in time,” he concludes.

Translated by Marcela Contreras

Benefits of natural fertilizers to vegetable farming

Benefits of natural fertilizers to vegetable farming

  • Dr Santiago Peredo, professor at the Technological Faculty of Universidad de Santiago, has shown that using natural fertilizers like humus and compost are suitable for growing vegetables. His project was awarded funds through the last Scientific and Technological Research Department (Dicyt) contest.

     

    The objective of the study “Estructura comunitaria de la mesofauna edáfica en sistemas de cultivos hortícolas manejados con aplicaciones de compost”, led by Dr Santiago Peredo Parada of the Department of Agricultural Management of Universidad de Santiago, is to show that natural fertilizers are the best alternative for growing vegetables.

    The study has been conducted in a demonstration center in Buin (Metropolitan Region), under the real management conditions of small scale producers in areas where lettuce, cauliflower, spinach, chard, tomato and carrots, for example, are grown.

    According to the National Statistics Institute (INE, in Spanish), the horticultural surface of the country reaches 70 thousand hectares:  14% of them correspond to corn, 10% to lettuce and 7% to tomato. Many of these products are exported to foreign markets, so it is important that they comply with high standards of quality. Besides, they are major components of the country’s diet and small scale producers are their main suppliers.

    Agro ecological research

    One of the main challenges posed by an agro ecological study is the unpredictable behavior of climate at implementing the experimental design.

    Dr Peredo is studying the variation of soil mesofauna in this farming systems to determine the amount and type of organisms present in a cropland, and how they vary (or not) when two organic fertilizers are used: compost and humus. 

    When using these natural fertilizers, soil mesofauna communities are the expected to modify their structures in different ways. Natural fertilizers are important because they activate the biology of the soil, contributing to improve the fertility of the soil and the development of crops.

    The idea is that the soil contributes to the fertility of the plant, avoiding the use of synthetic fertilizers. “Soil life will provide the optimal conditions to get the nutrients required by crops. This process is slow as it is necessary to create a balance in the soil that allows delivering the nutrients available,” he said.

    Benefiting the ecosystem

    Dr Peredo’s study has shown two significant results so far. On the one hand, the organisms that abound in the soil correspond to the same functional groups detected by studies conducted abroad: mites and springtails. On the second hand, changes in community structure are more evident during the crop development and in relation to the type of crop, when comparing with previous projects.

    The researcher highlights the importance of using this type of natural fertilizer, because “we should not only consider farming requirements, but also the needs of the soil organisms.”

    “The variety of functional organisms in the soil contributes to create the edaphic conditions for crop development by stimulating the soil’s biology. This is one of the core elements of agro ecological management. Using natural fertilizers is an efficient way of adding balanced organic matter to the soil. This practice, together with polyculture, is the base of biodiversity management in agro ecological systems,” the researcher said.

    Dr Peredo expects that his research line “will contribute to reassess the criteria for the granting of subsidies in soil reclamation and improvement programs, among others, and also to create new state incentives and aids. For us, it is imperative to conduct applied research under real conditions that allow an agro ecological transition at a parcel level.”

     

    Translated by Marcela Contreras

Researchers study solution to combat bacterium that affects fish

Researchers study solution to combat bacterium that affects fish

  • The death of fish caused by pathogenic agents is a major problem for the national aquaculture industry. For this reason, researchers at the Faculty of Chemistry and Biology are developing a project to generate a new immunization strategy.


 

The death of fish caused by pathogenic agents is a major problem for the national aquaculture industry. For this reason, researchers at the Aquaculture Biotechnology Center of the Faculty of Chemistry and Biology are developing a Fondecyt Initiation Project to generate a new immunization strategy.

According to the Undersecretary of Fishing and Aquaculture, in 2013 the fishing production was 2.9 million tonnes, 1.2 million of which were allocated for exports. Thus, our country stands out for its aquaculture industry, being one of the largest salmon producers worldwide, right after Noruega.

However, one of the major problems faced by this industry is the number of diseases caused by pathogens like Piscirickettsia salmonis, a bacterium that causes tissue damage and loss of appetite in fish, leading to fish death, decreased production, reduced quality of the product and the subsequent social impact.

According to Dr Sebastián Reyes, professor at the Faculty of Chemistry and Biology, “We only need to remember the health emergency caused by ISA virus in salmon farming. It caused social damage, because all communities related to aquaculture ended like ghost towns.”

A project to contribute with salmon farming industry

Through the Fondecyt Project 11150807 “Passive immunization as a new control strategy against Piscirickettsia salmonis,” researchers seek to propose an innovative and effective alternative to combat this bacterium that only affects fishes in Chile. For this purpose, they are working on a passive immunization strategy that involves stimulating the immune system’s cells to prevent the Piscirickettsia salmonis from spreading.

“We suggest stimulating the fish by using a hyperimmune serum. The idea is to give this serum to primary cultures of infected cells from the immune system and see if the serum is able to activate them and degrade the bacteria inside. We also need to describe the infectious cycle of the bacterium studied to measure its impacts as they are unknown for now.”

The project is also supported by the ICTIO Biotechnologies Consortium, created through a CORFO (the Chilean Economic Development Agency) project, which is formed by the following entities: Activaq S.A., Australis Mar S.A., Productos del Mar Ventisqueros, Salmones Blumar and Universidad de Santiago de Chile.

The project seeks to find a concrete and viable solution for the salmon farming industry by directly involving researchers and related companies to contribute to this strategic productive sector of the country.

Translated by Marcela Contreras

New contribution from Universidad de Santiago to the domestic industry: Researcher developed an eco-friendly antifungal packaging

New contribution from Universidad de Santiago to the domestic industry: Researcher developed an eco-friendly antifungal packaging

  • Dr Paula Zapata, professor at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, developed a fungicidal plastic film that degrades in a maximum of three years. This innovative product seeks to solve a common problem in food industry: the contamination by microorganisms produced between the production stage and the acquisition of the product by consumers.

     

    Dr Paula Zapata, professor at the Faculty of Chemistry and Biology of Universidad de Santiago developed a double function package that seeks to solve a common problem in food industry: the contamination by microorganisms produced between the production stage and the acquisition of the product consumers. The project has been funded by the Fundación para la Innovación Agraria (FIA) and the Metropolitan Regional Government.

    According to the project’s principal investigator, in comparison to other existing products, this new packaging is a contribution, “first, for its fungicidal properties, and second, as it is made up of an eco-friendly polymer, it is environmentally sustainable.” 

    To develop this film, the research team sought non-toxic natural agents and nanoparticles in order to keep food innocuousness and human safety.

    Transfer to the market

    Dr Zapata explains that this technological development can be used in different types of industry, then she thinks that the product’s transfer to the market is very achievable. For this reason, on December 06th, they presented the results of their work before several companies like Soprole, Multi Sport and Agrosuper, among others.

    “I expect the technological transfer process to be successful. The transfer involves different difficult stages, but with work and a good communication with the companies, and learning what they want and what they need, we will be able to achieve it,” she says.

    According to Juan Pablo Castro, Corporate Manager of the Flexible Packaging Division of Bo Packing, this project means a great contribution to the market, as they have been looking for a solution to the problems mentioned above for years.

    “I think the relation between the university and the companies is of great importance. I am a chemical engineer, so I feel involved in this research projects. Our doors are open to innovation, as it is the only way in which a country can develop 

    During the meeting, Osvaldo Quiroz, who is responsible for Networks and Outreach and Engagement at the Department of Technology Transfer of the Vice Presidency of Research, Development and Innovation, offered the company representatives the possibility of working in partnership with Universidad de Santiago.

    Undergraduate and graduate students at the Department of Chemical Engineering and the Faculty of Chemistry and Biology participated in the project, which also had the collaboration of Dr Franco Rabagliati, professor at the Department of Environmental Sciences.

     

    Translated by Marcela Contreras

Researcher at the Faculty of Chemistry and Biology studies toxic- resistant Antarctic bacteria

Researcher at the Faculty of Chemistry and Biology studies toxic- resistant Antarctic bacteria

  • Dr. Claudio Vasquez investigates the resistance of microorganisms in the Antarctic to tellurite, a derivative of metallic tellurium, which is very harmful and toxic to the environment.

Tellurium is a very scarce element in the earth's crust and its biological role is unknown to date. Although in its elemental state (Te ° metallic tellurium) it exhibits no toxicity, some of its derivatives, such as tellurite, are highly damaging to most bacteria.

In this context, Dr. Claudio Vasquez, professor at the Faculty of Chemistry and Biology at the U. of Santiago will be in charge of the Fondecyt project: "Antarctic tellurite-resistant bacteria: new mechanisms of resistance",  for three years.

The academic works with bacteria isolated in Antarctica, in order to analyze how the microorganisms react in a cold context in contact with the toxic. For the research, 800 toxic- resistant microorganisms, coming from 100 different Antarctic samples, were isolated. "Of all the samples, we chose four which showed greater resistance to unveil the defense mechanisms they use," the researcher says.

Dr. Vasquez adds that "over the years, we have identified proteins that help the cell to remove this toxic and, therefore, we think that these bacteria that have received more stress by being in extreme conditions at the Antarctic, could exhibit more sophisticated mechanisms. Our goal is to find new genes that encode novel proteins involved in the defense against these toxics.” the expert says.

As a projection of this study, the introduction of new genes into plants that grow in tellurium- contaminated environments, such as some mining areas, is expected. This would help the plants so that they can eliminate the polluting elements.

Pollution

The tellurite, produced as a result of industrial pollution, drains in groundwater by inhibiting or eliminating microorganisms that might be beneficial. It affects bacteria, fungi, plants and animals. For this reason, it is important to control the discharges which come from industrial exudates containing tellurium.

Tellurium is the molecular basis of solar cells that collect energy; therefore, any accident that might happen with these solar panels could release toxic elements.

CORFO awarded Universidad de Santiago a 2,600 million pesos fund to support scientific and technological business ventures

CORFO awarded Universidad de Santiago a 2,600 million pesos fund to support scientific and technological business ventures

  • Universidad de Santiago’s Innovo Center was awarded these funds to run the Flexible Allocation Seed Grant Fund for four years in order to accelerate the development of innovative scientific and technological business ventures of international impact.
  • “This grant is in recognition for the work done by the Center’s Business Incubator, which has dedicated itself to promote the innovation and entrepreneurship culture and has helped to create new technology-based companies,” Innovo’s Director said.

In order to strengthen scientific and technological business ventures, the Chilean Economic Development Agency (CORFO, in Spanish) awarded Universidad de Santiago’s Innovo Center 2,600 million pesos to run the Flexible Allocation Seed Grant Fund (SSAF, in Spanish) for four years. These funds will be earmarked for supporting innovative, high-impact start-up companies.

“The objective is to accelerate the development of local scientific and technological business ventures at an early commercial stage which are based on technologies in their last mile of development and have a potential international impact. We have 500 million pesos available for the first year and then, 700 million pesos every year,” Luis Lino, Innovo’s Director, explained.

These resources will be given to scientific and technological entrepreneurs through contestable funding. Those who are interested and meet the requirements will have to apply for it. For the business ventures that are granted SSAF funds, Innovo Center considers a first stage of international commercial validation. For this purpose, Innovo has 10 million pesos available, and for the second stage of commercialization support, it has 50 million pesos. Both stages require co-funding, as entrepreneurs will have to provide 25% of the total cost of the project.

“The contestable funding call will include entrepreneurs with technological projects, as well as other Chilean academic or research centers. The first call is scheduled between August and October this year and the projects will be evaluated according to their innovation degree, teamwork, technology development and their impact on the country,” Lino explained.

In Director Lino’s opinion, this grant is in recognition for the work done by the Center’s Business Incubator, which has dedicated itself to promote the innovation and entrepreneurship culture and has helped to create new technology-based companies.

Today, 33 companies are being incubated in fields like engineering, life science, biomedicine, and information technology with impact on industry. Some business ventures that are worth to mention are the development of a tidal power harvesting equipment, a biotechnological treatment for mining industry liquid wastes, the first electric car developed in Chile and a new energy dissipation system for buildings, among others.


Translated by Marcela Contreras

Researcher studies yeast that could naturally decontaminate food

Researcher studies yeast that could naturally decontaminate food

  • Yeast is a type of fungus that is present in multiple fermentation processes required for food. Due to this fact, new applications of yeast are being studied to decontaminate what we eat in a natural way and at low costs. The study is being conducted in the context of an Initiation Fondecyt project led by Dr Francisco Cubillos Riffo, a researcher at the Food Science and Technology Research Center of Universidad de Santiago.

     

    Yeast plays an essential role in the making of liquors, beer and bread. This fungus allows multiple fermentation processes required for producing foods as we know them. However, the importance of this catalyst goes beyond food production: it has the characteristic of controlling some mycotoxins. Mycotoxins are natural food contaminants that can cause acute poisoning when ingested, inhaled or absorbed.

    Through a genetic analysis of the response to the interaction between natural contaminants and yeast, the study led by Dr Francisco Cubillos Riffo seeks to develop new applications that allow decontaminating foods in a natural way and at low costs. 

    According to professor Cubillos, food innocuousness is very important in Chile, both for imports and exports. “The laboratory of Food Science and Technology Research Center of Universidad de Santiago (CECTA) is focused on research on food innocuousness. The type of yeast that we are studying now has the characteristic of decontaminating mycotoxin-containing foods,” he added.

    Preventing diseases

    The importance of this study lies on the need for preventing diseases transmitted by animals, eliminating contamination of human-consumption products. The analysis of this strain and others coming from different places in the country seems to be suitable to find effective applications.

    “We will study yeasts of different origins and then we will evaluate them at a genetic level. We will be able to determine what yeast is the one with the highest ability to degrade pollutants or decontaminate food, and at the same time, will conduct genetic studies on the different strains collected,” Dr Cubillos said.

    “Many of these toxins manage to enter the food chain and cause damage; therefore, it is necessary to find natural alternatives for decontamination. Yeast is not a chemical product, it is not a toxic treatment, it is cheaper, and most of the time, it is completely innocuous,” he added.

    The study will have a broad impact and Dr Cubillos considers the new possibilities as favorable. “Eventually, we could reach the industry and start partnerships with the Faculty of Administration and Economics. Also, with the data collected during the project, mathematical models can be developed to determine the specific behavior of yeasts in stressful environments, what would contribute even more to future studies,” he said.

    Translated by Marcela Contreras

Pages

Subscribe to RSS - Investigación