Investigación

Undefined

Researcher develops technique to address water scarcity and pollution in the mining industry

Researcher develops technique to address water scarcity and pollution in the mining industry

  • The project, funded by CORFO, is led by Dr. Claudia Ortiz, researcher at the Faculty of Chemistry and Biology, and it focuses on developing a biological filter using brown algae, enhancing copper and arsenic recovery from the water used in the mining process. The filters can also be used as desalination agents. This involves the real possibility of using seawater as an alternative to mining production processes.

Water consumption in Chile’s mining industry is now a multi-faceted problem. Water shortage in large deposits of minerals located in the center and northern part of the country, the disadvantages of the systems available for water treatment, and the figures, show that 95 percent of the recourse that enters the plants ends up as waste.

Given this reality, the project led by Dr. Claudia Ortiz, researcher at the Faculty of Chemistry and Biology, aims to obtain a biofilter prototype (biological filters) based on Chilean brown algae, which are chemically modified for the absorption of large concentrations of elements such as copper and arsenic.

In words of the researcher, "the direct recovery of copper, by using biofilters, will cause productive benefit and also an increase in the life cycle of the water process, resulting in more efficient resource usage. Also, the content of elements, such as arsenic and copper, will decrease. Their presence in the environment is a global problem because of the persistence, bioaccumulation and toxicity to living organisms. "

This project corresponds to one of the six initiatives of the Applied R & D project funded by CORFO, which the University will run.

Because of its high efficiency at low concentrations of heavy metals and its low cost, the filters may also be used as desalination agents and this means the real possibility of using seawater, as an alternative to mining production processes.

"The project involves a comprehensive solution, which is efficient and cheap to industry. Currently, this field faces three problems: access to water resources, optimization of copper production, by recovering this metal from the waste, and the use of sea water in the process," Dr. Ortiz says. She adds that in a first phase, the project includes the development of laboratory-scale biofilter prototype and then the project scaling to industrial level.

The project is conducted by: the Department of Biology of the Faculty of Chemistry and Biology; the Department of Geographic Engineering of the Faculty of Engineering, and the Department of Mechanical Engineering, as hydro-specialized support, as well as Good Harbour Technologies a Canadian company specialized in process scaling, and División Codelco Chuquicamata, as associated with the project.

Researchers work to develop a vaccine against salmonid bacterium

Researchers work to develop a vaccine against salmonid bacterium

  • By means of a Regular Fondecyt Project, researchers at the Faculty of Chemistry and Biology, led by Dr. Brenda Modak, are studying a treatment to protect the national salmon farming industry from the dangerous bacterium Piscirickettsia Salmonis, by using wild plants from the Atacama Desert.
  • “Synthetic products have proved to be a problem where they have been used as they accumulate at the bottom of the sea. This is the reason why we refer to this as a sanitary challenge that national aquaculture has to face. Working with a natural compound will not only lead to a less invasive cure: there will also be less pollution in waters where it is used,” Dr. Modak stressed.

In the last decades, aquaculture in Chile has been constantly growing, placing Chile in the first place of producers in America, according to the Food and Agriculture Organization of the United Nations (FAO). Also, salmon production accounts for 76% of the national fish farming industry, according to the National Service of Fishing. For these reasons, infections affecting salmon farming at a national level can become a serious problem for the country.

“We are the world’s second leading country in salmon farming, after Norway. So, everything related to infectious diseases becomes important, even more, when it comes to Piscirickettsia salmonis, a bacterium that has killed about 50% of the salmon population in the country,” affecting an industry that generates more than 60 thousand jobs in the south of the country,” Dr. Brenda Modak stressed.

In order to find effective solutions to this problem, Dr. Modak, together with a multidisciplinary research team from Universidad de Santiago’s Faculty of Chemistry and Biology, are working on the Regular Fondecyt Project “Evaluation of natural products with potential antibacterial activity against P. Salmonis.”

“We are trying to test the activity of natural products isolated from plants against this bacterium (P. Salmonis), which has been difficult to combat with common synthetic antibiotics. However, our compounds have proved to be effective as antiviral drugs and immunostimulants for salmons, so this is where the idea of testing them in salmons already infected came from,” she said.

To develop the treatment, researchers will work with plants that grow wildly in the Atacama Desert, which produce a resin that covers the plants to protect themselves against the unfavorable environment in which they grow.

“We will extract the resin from the plant and then we will separate its different components. We have seen that the resin is made of two groups of compounds, from which we will take some samples and test them against the bacterium,” she said.

Three Universidad de Santiago’s laboratories are taking part in this study: the Laboratory of Chemistry of Natural Products, the Laboratory of Immunology and the Laboratory of Virology. First, the study of the extracted resin will be started until the pure compounds are obtained. This will be followed by the bacterial cell growth. Then, the in vitro work will be done, observing how the bacterium is affected by the compounds. Finally, in the in vivo work, salmons will be infected and then they will be given an injection with the elaborated product.

“Synthetic products have proved to be a problem where they have been used as they accumulate at the bottom of the sea. This is the reason why we refer to this as a sanitary challenge that national aquaculture has to face. Working with a natural compound will not only lead to a less invasive cure: there will also be less pollution in waters where it is used,” Dr. Modak stressed.
 

Translated by Marcela Contreras

Safer process for cyanide absorption and stripping in gold mining developed by research team at Universidad de Santiago

Safer process for cyanide absorption and stripping in gold mining developed by research team at Universidad de Santiago

  • Cyanide is one of the most commonly used chemicals in gold mining, mainly because it is easy to obtain and is highly effective in recovering this metal. However, due to its high levels of toxicity, its use should be controlled to avoid leaks. This is the reason why the process suggested in the study led by Dr Julio Romero, professor at the Department of Chemical Engineering of our University, is so important.


 

“These processes require very large equipment and a constant control, and may involve potential hazards, like leaks. This fact is particularly critical, because there may be gas streams containing cyanide as hydrogen cyanide flowing in the plant through large columns that could affect both people and the environment, if they are not handled with enough caution,” Dr. Julio Romero, researcher at the Department of Chemical Engineering, said.

For these reasons and according to the research lines of the Laboratory of Membrane Separation Processes (LabProSeM) of Universidad de Santiago de Chile, the research team conducted a study to minimize the risk posed by the changing conditions of cyanide by means of a membrane absorption process. The study was published by the Journal of Membrane Science with the name of “Design and cost estimation of a gas-filled membrane absorption (GFMA) process as alternative for cyanide recovery in gold mining.”

“We developed and adapted a new process that requires only one confined and compact piece of equipment. It allows cyanide to pass from one phase to the other without having to change its condition to gaseous state in a circulating stream, thanks to a membrane that absorbs and desorbs this substance in one stage,” he explained. 

The system works as a selective barrier, partly similar to biological membranes. These membranes are commercialized in the market and they are adapted for this specific use.

“This time, we evaluated a membrane with gas-filled pores, specifically, air-filled pores. In this way, the two solutions- the one from which the cyanide will be removed and the one in which the cyanide will be kept- contact each other passing through the membrane pores. This allows a controlled operation, reducing the risk of cyanide escapes into the atmosphere,” Dr Romero said.

The study was developed as of some systems that simulated the composition of the water in a gold deposit. This increases the feasibility of the design in real operations, because it suggests a reduction in the energy footprint of the process. Besides, it produces a 35% more of the net value provided by the AVR system and is comparable to the SART process.

The published article is the result of a more extensive study related to the dissertation work of Humberto Estay, graduated from the Engineering Sciences PhD program with a Major in Process Engineering, at Universidad de Santiago. Students and academics at Universidad Tecnológica Metropolitana have also contributed to this work.

Contributing to Green Chemistry

The LabProSeM has worked for more than 14 years on the study of membrane separation processes and their use in hydrometallurgical processes, food processing, biofuel separation and gas and waste management.  

Currently, the different studies supported by this laboratory have an ultimate goal: to incorporate the principles of eco-friendly chemistry. This idea was inspired by the green chemistry philosophy, based on 12 principles that intend to reduce the impact of future chemical processes.

“Membranes, as selective barriers, use a physical means to restrict the use of reagents and chemicals harmful to the environment. We would like to focus our research lines on the development of applications that respect the principles of green chemistry. We try to modify the design of our products, chemical treatments, processes and others, to make them eco-friendly. All this with the purpose of eliminating or considerably reducing the production of pollutants,” Dr Romero said.

Translated by Marcela Contreras

Universidad de Santiago has the potential to be leader in most areas of research

Universidad de Santiago has the potential to be leader in most areas of research

  • “Universidad de Santiago has all the potential to be number one in most areas (of research in the country),” Dr Pablo Zamora, Scientific Director of University of California Davis in Chile, says. The institution opened its centre in Santiago last April, thanks to the CORFO’s Program Attraction of International Centres of Excellence. He adds that his institution is interested in the possibilities of research and development in biology, chemistry and agricultural management, among others.

 

Dr Pablo Zamora, graduate of the Faculty of Chemistry and Biology of Universidad de Santiago and current Scientific Director of University of California Davis in Chile, proposes a research model based on demand. Last April, this institution established a research centre in Chile thanks to the CORFO’s Program Attraction of International Centres of Excellence.

On April 21st, President Michelle Bachelet opened the UC Davis-Chile Life Sciences Innovation Centre in Santiago, Chile, a worldwide example in the development of research and solutions in agriculture, forestry and life sciences.

The founding academic partners are Universidad de Tarapacá, Universidad de Talca and Universidad Andrés Bello, while the corporate partners are Viña Concha y Toro and Viña San Pedro-Tarapacá. Currently, Universidad de Santiago de Chile is in the process of ratifying its incorporation to UC Davis Chile.

Dr Pablo Zamora, graduate of the Faculty of Chemistry and Biology of Universidad de Santiago and PhD in Biotechnology, leads the scientific area of this initiative and is in charge of facing this new challenge of doing science form a perspective that strengthens the links between the corporate and the academic worlds.

Interest

“We are interested in Universidad de Santiago for its research and development capabilities in biology, chemistry, agriculture and agriculture management in the Technological Faculty. Another big advantage is the capability that the University has in engineering issues,” Dr Zamora says.

Universidad de Santiago will be represented by Dr Alejandra Moenne, professor at the Department of Biology of the Faculty. She will be the technical counterpart in the Scientific Board of US Davis Chile. She will be in charge of leading research proposals and representing the University in the projects managed in partnership by both institutions.

“We see Universidad de Santiago in different roles. For example, in the area of applied research, with its laboratories and also in development issues,” he says.

“The UC Davis Chile research model is different, but not original. It is based on the demand. In Chile, this has not been well developed because companies have little capacity to generate research. There is also a sort of dissociation between the companies’ challenges and the research conducted by universities,” he explains.

UC Davis Chile focuses its work on four large areas: wine making, post harvest and climate change technologies and genetic improvement.

“In order to make sure that research projects will really have an impact on industry, we will meet with companies, learn about their problems and analyze the knowledge and services offered by UC Davis and its national academic partners to formulate projects to solve those problems. This seems quite obvious, but it usually does not occur,” he says, regarding the way in which UC Davis Chile works.

“Not all companies consider scientific research as a tool that can make them more productive. UC Davis has a large experience in collaborating and generating solutions for the production problems that companies have. This allows them to start seeing research as a means to enable increased competitiveness,” he adds.

Back in Chile and at the University

For this graduate of the Faculty of Chemistry and Biology and current member of the staff of the doctoral program in biotechnology, collaborating with the University is not only a matter of being fond of the University; he thinks that Universidad de Santiago “has all the potential to be number one in most areas (of research) in Chile.”

“Being back at the Faculty is very gratifying. Its progress is evident and, for this reason, I have full confidence that Universidad de Santiago can be number one at a national level,” he says.

Ministry of Science

With regards to President’s Bachelet announcement of the creation of a Ministry of Science, Dr Zamora says: “It is valuable, because, in some way, it makes science visible, but it does not guarantee the development of better science in Chile. As a scientist, I think it is valuable, but I believe that there should be a focal point and clear guidelines, and because we are a country with little resources, some strategic areas should be clustered together and strengthened,” he says.

“I think that the State should make an effort in involving and building links with the productive sector. In turn, the private sector should commit itself to allocate more resources for research and development. UC Davis in Chile will contribute to strengthen the relation science-industry, together with other institutions. Is this happening? Yes, it is. Are we on the right track? I believe we are. Is all this happening at the speed the country requires? I think it is not, but things don’t happen from one day to the next,” he concludes.

Translated by Marcela Contreras

Researcher seeks to reduce chronic arthritis pain using nanoparticles

Researcher seeks to reduce chronic arthritis pain using nanoparticles

  •  Dr Claudio Laurido, professor at the Faculty of Chemistry and Biology of Universidad de Santiago, is studying the reduction of chronic arthritis pain by using drugs administrated via extended-release nanoparticles. “Currently, very strong injectable drugs are required, like morphine, with several undesirable side effects. The purpose of using these nanoparticles is to administrate lower doses of drugs, hopefully, with less side effects,” the researcher said.

 

According to the Chilean Ministry of Health, 1% of the population suffers from rheumatoid arthritis, mostly women between 45 and 75 years old.

Dr Claudio Laurido, professor at the Department of Biology of Universidad de Santiago, seeks to use drug-loaded extended-release nanoparticles to inhibit arthritis pain, by injecting them into the lumbar cerebrospinal fluid. 

“Currently, very strong injectable drugs are required, like morphine, with several undesirable side effects. The purpose of using these nanoparticles is to administrate lower doses of drugs, hopefully, with less side effects for patients,” the researcher says.

The study "Manufactura de nanopartículas de liberación prolongada de fármacos, caracterización y ensayo en ratas monoartríticas" (Development of drug extended-release nanoparticles. Characterization and testing in monoarthritic rats), will last for three years and is funded by the Scientific and Technological Research Department (Dicyt, in Spanish) of Universidad de Santiago.

The researcher says that there is evidence that chronic pain can kill a person. If pain is not controlled, it can affect the immune function, stimulate tumor growth, and cause depression, increasing the risk of suicide in patients.

“Common drugs are not the solution, as they relieve acute pain, which may be strong, but then it is reduced until disappearing. Chronic pain persists in time,” he adds.

For this reason, this study is focused on analyzing the neurobiological bases of chronic pain and identifying the cells involved in the processes that start, develop and maintain chronic arthritis pain.

Contributing to neurobiology

Dr Alejandro Hernández, co-investigator in this study, suggests the possibility of modulating spinal pain mechanisms by suppressing the communication between the glial system and neurons with drugs. For this purpose, the study will develop nanoparticles loaded with drugs that improve the cerebral blood flow.  

In this study, nanoparticles will be made of biocompatible and biodegradable materials, like lipids and other products used in the food and cosmetics industry.

“These nanoparticles are used for their ability to encapsulate and release drugs over time. A common pill does not have this ability and lasts for a maximum of 4-6 hours. In this case, only one dose is totally effective,” Dr Laurido explains.

With this study, the researcher expects to contribute to the field of neurobiology. Extended-release nanoparticles allow to place drugs close to the area where the pain is generated (spinal cord), using much lower doses, reducing the administration frequency, reducing or eliminating undesirable side effects and increasing drug effectiveness. It will be a great contribution to the study of pain.

 

Translated by Marcela Contreras

British Government Fund to support CESS Oxford-U de Santiago

British Government Fund to support CESS Oxford-U de Santiago

  • The work of the CESS Oxford-U de Santiago was evaluated by the Newton-Picarte Fund as one of the best projects.

 

 

The funding allocated by this program of the British Government will allow the Center to continue its path to become a hub of experimental research in Social Sciences in Latin America. It will allow promoting the training of PhD students and professors in experimental research, particularly in experimental methods for the analysis of public policies.

The Newton-Picarte Fund program is a partnership between the Chilean’s National Commission for Scientific and Technological Research (Conicyt, in Spanish) and the British Government to support scientific research in Chile, particularly in joint research projects involving Chilean and British scientists, technology transfer and innovation, advanced human capital development for research and innovation, and the generation of  challenges that provide innovative solutions for the development of our country. 

Funding allocation

Raymond Duch, Director of the Center for Experimental Social Sciences Oxford-Universidad de Santiago, explains that the most important contribution of this fund is that it will allow providing training to policy makers in Chile.

“This training will help them to apply experimental methods to design more effective and efficient policies in different areas. First, we will focus on Education, but in the long term, we will include other important areas of Chilean politics,” he emphasizes. Besides, the fund awarded will finance a workshop with renowned social scientists worldwide.

“It will be a unique opportunity for students in Chile to meet with policy makers and analysts and discuss the current policies faced by the Chilean Government and also give ideas on how to make policies that meet their goals. For example, a way of improving job opportunities for Chilean youngsters who have problems to enter the labor market,” he says.

The Newton-Picarte Fund will allow the Center to offer its training programs, research and educational possibilities to a wide variety of Chilean academics, the Government and the private sector.

“The training courses that we have developed for our partners in the Chilean Government will be available for ministries, students and teachers as well as decision-makers in the private sector,” Director Duch concludes.

The funds were awarded after a highly competitive process in which the CESS Oxford-U de Santiago was among the best evaluated projects.

 

Translated by Marcela Contreras

Scientist at the Aquaculture Biotechnology Center discovers new information on mortality caused by the ISA virus

Scientist at the Aquaculture Biotechnology Center discovers new information on mortality caused by the ISA virus

  • A study by Dr. Mario Tello, researcher at this center, establishes a previously unknown relationship between an infectious salmon anemia (ISA) genome segment and its virulence.

The study by this researcher at the Aquaculture Biotechnology Center and the Faculty of Chemistry and Biology, University of Santiago de Chile, could provide important insights about how to predict salmon mortality by the ISA virus, a disease that affects Chilean aquaculture since 2007.

The research "Analysis of the use of codon pairs in the HE gene of the ISA virus shows a correlation between HPR bias in codon pair use and mortality rates caused by the virus" was published in the June issue of the Virology Journal, a specialized international publication.

The journal provides details of the investigation conducted by the University Of Santiago de Chile’s scientist who was able to identify the role and the relationship of a segment of the ISA virus by using bioinformatics tools and the existing literature.

According to Dr.Tello, the results of this study are one of the first hypotheses to explain why a highly variable region of the virus, called HPR (High Polymorphism Region), would be associated with the observed virulence.

 "Our results suggest that there is a region of the virus affecting its transmission and its ability to cause the disease. “That is to say, our analyzes suggest that there is a direct relationship between the mortality caused by the virus and the efficiency of its translation", Dr. Tello says.

According to the researcher, "the strain of the virus found in Chile would be one of the most efficient in the translation, and this would be directly related to an increasing mortality," and explain one of the possible reasons for the high mortality reported in our country.

Although the in vitro results have not been confirmed yet, the research is already an important step in deciphering the ISA virus characteristics, and it could provide solutions to the salmon industry. "Perfectly, these solutions could aim at generating a virulence predictor based on the analysis of the HPR region, a predictor in which we are working," the scientist says.

Researcher at Universidad de Santiago will lead international program

Researcher at Universidad de Santiago will lead international program

  • Dr. María José Galotto, director of Universidad de Santiago’s Packaging Laboratory, was appointed as the National Contact Point for Horizon 2020 Framework Program in the area of nanotechnology. Horizon 2020 is a European program that provides funding for research and innovation in different fields. “This is in recognition of the University’s positioning in the area of Nanoscience and Nanotechnology, reached through CEDENNA,” the researcher said.

The National Commission for Scientific and Technological Research (Conicyt, in Spanish) informed that Dr. María José Galotto, director of Universidad de Santiago’s Packaging Laboratory (Laben, in Spanish) was appointed National Contact Point for the Horizon 2020 Framework Program in the area of “Nanotechnologies, Advanced Materials and Advanced Manufacturing and Processing.”

Dr. Galotto said that her appointment “is in recognition of the University’s positioning in the area of Nanoscience and Nanotechnology, reached through the Center for the Development of Nanoscience and Nanotechnology (CEDENNA, in Spanish), where nanotechnology is being applied to different areas of knowledge. This appointment will consolidate this new line of research and this positioning.”

According to Dr. Galotto, it is also in recognition of the constant work that Laben has developed over time, which results have been reflected in several research projects, publications in ISI journals and patents. This, in turn, results in a very close relation with the food and agricultural industry and food packaging industry at a national and international level.

The Laben was invited to be part of the International Association of Packaging Research Institutes (IAPRI). This membership, awarded by invitation only, is proof of the international recognition that our University has received.

Dr. Galotto’s appointment is also important because this area has a great future in the Food Science and Technology field; therefore, being able to get in contact with other research groups in Chile and abroad, will strengthen the links between the University’s academics and other researchers.

Among her new responsibilities, she will have to promote and foster the participation of nanotechnology research groups in the Horizon 2020 Framework Program, in which Chile will be entitled the same benefits that the European Union member states enjoy.

Regarding this, Dr. Galotto said that “up to date, we have had the first work meeting at Conicyt and we have scheduled others for the second semester, both here in Chile and in Europe.”

Nanotechnology

According to the researcher, “nanotechnology will integrate with food and agricultural industry as an option for developing food with better sensory and nutritional properties, better quality, and useful life, and greater safety.”

Dr. Galotto specified that our University is well ahead in this area, since the Laben has been working several years in applying nanotechnology to food packaging.

She added that researchers at Laben have led studies, in which nanotechnology has been applied, for example, to the development of packaging with anti-microbial activity to extend the life of food like salmon, or to reducing the level of compounds that accelerate the ripening of climacteric fruits like kiwi or avocado, among others.


Translated by Marcela Contreras

Antarctic microorganisms will be used to produce lactose-free milk

Antarctic microorganisms will be used to produce lactose-free milk

  • Researchers at the Food Science and Technology Research Center of Universidad de Santiago de Chile (CECTA- USACH, its acronym in Spanish) will participate in a Fondef project that seeks to improve enzymes’ ability to produce lactose-free milk in cold conditions, increasing the efficacy of the dairy products industry. In partnership with members of the Chilean Antarctic Institute (INACH, its acronym in Spanish), they will search for enzymes in different microorganisms from the Antarctica that would allow working at low temperatures. In Chile, 60% of the population suffers from lactose intolerance.


 

Lactose intolerance is a condition that affects millions of people all over the world. It is estimated that 30 to 50 million people in the United States suffer, to some degree, from this condition. An estimated 90% of the Asian population has the same problem, just like 60% of the Chilean population.

Lactose is a type of sugar found in milk and other dairy products. The body needs an enzyme called lactase to break down lactose. Lactose intolerance occurs when the small intestine cannot produce enough lactase. This is the reason why lactose content in milk has to be reduced, so that people suffering from this condition are able to drink it.

The project expects to detect an enzyme that allows breaking down lactose at low temperatures and at a better level of efficiency than the one of the enzyme currently used in the industry. Researchers will search for this enzyme in different microorganisms (fungi, yeasts and bacteria) that have been already isolated and brought from the Antarctic continent.

Once the efficacy at low temperatures of this “Antarctic enzyme” is described and tested, the project will be able to move forward to obtain the resources required for creating the conditions to transfer this biotechnological product to the industry.

In this way, finding enzymes which are highly effective in reducing the lactose content of milk at low temperatures will not only allow to optimize some of the current production processes, but it will also open new possibilities for the design of lactose-content reducing processes in cold conditions and for the production of lactose-free foods.

The project called “Antarctic enzyme with highly effective β-galactosidase activity to reduce lactose content of milk at low temperatures” (ID14I10098) will last for two years and will be funded by Fondef and Universidad de Santiago. It will be led by Dr Renato Chávez Rosales (Director), professor at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, and Dr José Luis Palacios Pino (Alternate Director), researcher at Cecta-Usach.

The experts will work in partnership with members of the Chilean Antarctic Institute in the search for the enzyme in different microorganisms brought from the Antarctica.

Translated by Marcela Contreras

Researcher seeks to reduce the environmental impact of plastic containers

Researcher seeks to reduce the environmental impact of plastic containers

  • Plastic containers have caused an out-of-proportion environmental crisis all over the world. In this regard, Dr Alejandra Torres, professor at the Food Science and Technology Research Center is developing new containers with lower environmental impact through the Fondecyt Initiation Project (11140404,) “En la impregnación supercrítica de compuestos naturales en biopolímeros utilizados como envases de alimentos.”

 

The purpose of the study led by Dr Alejandra Torres is to inquire about new elements to produce new containers with lower environmental impact, by enhancing their properties through a novel process that involves the incorporation of substances that reverse the microbiological damage. Dr Torres is a professor at the Food Science and Technology Research Center (Cecta, in Spanish) and is member of the solid research team of the Packaging Laboratory of Universidad de Santiago (Laben, in Spanish).

The study was funded by the Fondecyt Initiation Project (11140404), ‘En la impregnación supercrítica de compuestos naturales en biopolímeros utilizados como envases de alimentos’.

According to the expert, through this initiative they will try to improve the production of food containers in three different areas: environment, new properties and new attributes.

The project addresses three essential aspects of research and development of new food packaging: the use of vegetal antimicrobial active compounds, the process to incorporate theses substances into the plastic material, and the material used to produce containers.

Currently, most of the plastic packaging used for food is made from petroleum-based raw materials. This causes a huge environmental impact for the plastic waste build-up.

“In the project, we will work with a biodegradable plastic material called polylactic acid, which is derived from renewable resources, such as corn. However, this type of material has some disadvantages. For example, it is highly permeable to water vapour, reducing the shelf life of products and/or increasing the risk of food-transmitted diseases,” Dr Torres says.

Incorporation of natural substances

A second important aspect addressed in this project is the incorporation of natural substances into packaging. These compounds come from essential oil extracts based on herbs, like oregano and thyme. They have antioxidant and/or antimicrobial properties that could extend the shelf life of the packed product and could keep its quality.

There are several ways of incorporating these substances into plastic containers. “One of the most common processes in food industry is the extrusion process. However, it usually requires high temperatures, resulting in the loss of the properties of the substances in the natural compounds,” the researcher says.

For this reason, this project intends to use the supercritical impregnation process as incorporation method.

This method has long been used in the field of medicine and one of its main advantages is that it does not require high temperatures, preventing the thermal degradation of the natural substances and, consequently, the degradation of its activity.

Regarding the expectations for this study, Dr Torres says that the results that they have obtained up to know are very interesting and promising for the development of new food packaging using more eco friendly materials.

Translated by Marcela Contreras

Pages

Subscribe to RSS - Investigación