Investigación

Undefined

New compound to prolong shelf life of dairy products

New compound to prolong shelf life of dairy products

  • The project led by Dr Silvia Matiacevich, professor at the Department of Food Science and Technology of the Technological Faculty, seeks to renew food industry by developing a compound with antimicrobial and antioxidant properties to prolong shelf life of dairy products. The project is funded through a Fondecyt Regular project 2016.

 

 

Nowadays, fresh, healthy and natural food consumption has increased, particularly, the intake of dairy products. According to the Chilean Bureau for Agricultural Studies and Policies (ODEPA; in Spanish), in 2013 the intake per capita was 146.5 liter, a national record in the country. 

However, these products require additives for their preservation that are not always natural and that do not allow a balanced and healthy diet.

In this context, Dr Silvia Matiacevich, professor at the Department of Food Science and Technology of the Technological Faculty; Dr Rubén Bustos, professor at the Department of Chemical Engineering of the Faculty of Engineering, and students at both units formed an interdisciplinary research team that will work on the study “Prolonged release of natural active compounds for improving shelf life of a dairy food matrix: Effect of structure obtained by different encapsulation process”. The project is funded by a Fondecyt Regular project (1160463) and it seeks to find a new active compound to preserve dairy products by means of nanotechnology. 

“We want to develop a new active ingredient with antimicrobial and antioxidant properties for dairy foods, in such a way that the compound has a prolonged release during storage, extending the product’s shelf life,” Dr Matiacevich says.

With this in mind, the researchers intend to study how the structure generated in this active ingredient- a powder developed through two different techniques- modifies its prolonged release in time in a real matrix,” she adds.

Food innovation and collaborative work

The objective of the study is to evaluate the effect of the structure obtained through “different encapsulation processes in prolonged release during storage of an encapsulated active agent,” in order to prolong the shelf life of a milk-based food matrix.

“By using encapsulation processes it is possible to obtain nanometric-sized particles, so the principles of nanotechnology are involved in this development,” favoring the compound prolonged release,” Dr Rubén Bustos, co-researcher of this study, says.

Food innovation research has increased worldwide. In Latin America, there are several research groups. For example, there are centers in Argentina, Colombia and Brazil, which professionals will collaborate in this project.

According to Dr Matiacevich, the main contribution of this study lies in that they will work directly with foods, so the study will not only provide basic knowledge but it will be applied to a real matrix.

For his part, Dr Bustos stresses the importance of their work with nanotechnology by saying: “At some point, microencapsulated ingredients were the greatest breakthrough, but now we will work with nanoencapsulated compounds, with much smaller and innovative structures.”

For the research team, the most important fact in relation to this project is that it involves the collaborative work of two departments of two different faculties of Universidad de Santiago de Chile. They also value the support of the Vice Presidency of Research, Development and Innovation, and the collaborative work with national and foreign universities. 

 

Translated by Marcela Contreras

Maqui berry to combat side effects of psychotropic drugs

Maqui berry to combat side effects of psychotropic drugs

  •  According to Dr Leonel Rojo, researcher at the Faculty of Chemistry and Biology, the use of Aristotelia Chilensis allows to reverse the problems caused by the use of psychotropic drugs, like obesity, diabetes and cardiovascular diseases.

 

 

Dr Leonel Rojo, researcher at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, found that people using antipsychotic drugs for 6 continuous months exponentially developed obesity, insulin resistance, dyslipidemia and cardiovascular diseases.

According to the Chilean National Institute of Public Health, clozapine and olanzapine have been the most commonly imported psychotropic drugs in Chile in the past ten years for their low cost and effectiveness for the treatment of psychosis or schizophrenia in adult patients and the treatment of attention deficit disorder, autism, Asperger syndrome and bipolar disorders in children.

However, the side effects that they produce alerted Dr Rojo, as he found that antidiabetic drugs did not help patients to overcome their problem. He started looking for solutions, and after testing a Chilean product in laboratory, in 2012 he found an answer: Maqui berry (Aristotelia Chilensis), a small tree that grows in the center and the south of Chile.

“Descubrimos en Estados Unidos, que uno de sus compuestos es fuertemente antidiabético, así que pensamos que el maqui puede prevenir la obesidad que es causada por antisicóticos y descubrimos que previene la acumulación de lípidos en las células en pacientes tratados con estos fármacos”, explica el experto en toxicología.

“In the USA, we found that one of the maqui components is a strong antidiabetic compound, so we thought that maqui could prevent the obesity caused by antipsychotic drugs. We found that it reduces lipid accumulation in the cells of patients who are treated with these drugs,” Dr Rojo explains.

Research team

Dr Rojo has an extensive scientific experience. His work has been recognized by the New York Society of Cosmetic Chemists and the American Society of Pharmacognosy, after he discovered an anti-aging technology based on Pouteria Lucuma bioactive compounds.

The project has the collaboration of Dr Ilya Raskin, of Rutgers University, New Jersey (USA); a research team of Universidad de Chile, led by Dr Pablo Gaspar; and the Hadassah Academic College of Jerusalem.

The study is called “Evaluation of Anthocyanins from Maqui Berry in the Prevention of Clozapine-Induced Hepatic Lipid Accumulation, Activation of SREBP1c Target Genes and Obesity” and it is funded by a Fondecyt Initiation Project in the field of psychotropic drugs and metabolism.

Current situation and expectations

Currently, Dr Rojo and his collaborators continue working in the laboratory at the Faculty of Chemistry and Biology of Universidad de Santiago. At this stage, they are trying to elucidate how the natural maqui components (called anthocyanins) prevent lipid accumulation and the metabolic problem associated to the use of antipsychotics.

 

The researcher expects to conclude his work by the end of 2017 with a continuity project that allows using the product in patients. Dr Rojo says that this project will benefit the country, because he thinks that the product would not be expensive; and it would also be good for national economy, because people who collect and sell maqui are eager to find new uses for it.

Today, the product is considered as a super fruit and it is mainly commercialized in the United States. Besides, there are already companies interested in the project and in getting involved in it.

 

Translated by Marcela Contreras

University researcher proposes innovative plant to decontaminate textile industry waters

University researcher proposes innovative plant to decontaminate textile industry waters

  • The project, led by Dr. Ricardo Salazar, professor at the Faculty of Chemistry and Biology of the University, aims at decontaminating the water from dyes waste and additives, by using electricity and solar energy.

The textile industry in Chile was born in the mid-nineteenth century and expanded thanks to the measures of protection of the internal market which were implemented at that time. Another factor was the arrival of Palestinian immigrants that gave prosperity to the development of the industry.

However, as all industrial activity, this industry was also a contaminant, due to the use of water in its tasks.

This situation becomes a serious problem when you consider that our country has  supply and drought problems. In this context, Dr. Ricardo Salazar, an academic at the Faculty of Chemistry and Biology at the U. Santiago, is leading the Fondecyt project: "Degradation of dyes in wastewater from the textile industry by electrochemical oxidation technologies.” With this project, he aims to provide a solution for wastewater reuse in this process.

The study comes from a previous work by this expert that consisted in analyzing water decontamination of pesticides used in the wine industry. "The first two projects involved water treatment in the laboratory and comprised a chemical study. Now, however, I proposed the construction of a pilot plant to treat more wastewater from the textile industry”, Salazar said.

The project aims to be a contribution to environmental conflict resolution. This is the vital motivation for this academic, who seeks to decontaminate waters that contain dyes wastes and additives. To achieve this, he will work with electricity and solar energy and without using chemicals.

In addition, Dr. Salazar adds that "laws are becoming more stringent for industries in terms of technology demand and waste disposal rates. Therefore, the industries will have to be prepared. The idea is to step forward and provide an approach to this conflict and be useful in the future. "

Purification Process

The purification process is performed by the hydroxyl radical, which derives from water oxidation. This element reacts with the organic components present in the water, degrades pollutants and transforms the contaminant organic compounds into carbon dioxide.

Some of the steps included in this four-year project are: to finish the work in the laboratory, which aims to observe what happens in the whole process; identify each of the compounds that are produced and, finally, build a pilot plant. In this last stage, the scholar has the direct support of Dr. Julio Romero, project co-investigator who is also a researcher at the Faculty of Engineering of the University.

For Dr. Salazar, the importance of the research that he develops lies, mainly, on the human capital formation and in the "responsibility of changing the image of research in the country. Our work could contribute to the enterprise, the industry and, obviously, the University, as we could get the latest technological equipment to develop the project and internationalize the name of the institution. "

 

By Marcela González

University receives recognition for its high number of patent requests filed

University receives recognition for its high number of patent requests filed

  • The National Institute of Industrial Property recognized Universidad de Santiago as the third Chilean university with the highest number of invention patent requests that seek to contribute to the country development in fields like chemistry and biology, engineering and technology. Maximiliano Santa Cruz, Inapi’s National Director and Óscar Bustos, Vice President of Research, Development and Innovation of Universidad de Santiago,   encouraged the University community to continue constantly producing industrial innovations to contribute to society.

On April 25th, in the context of the World Intellectual Property Day, our University was recognized as the third best national institution in requesting invention patents during 2013.

The National Institute of Industrial Property (Inapi, in Spanish)- an agency responsible to the Ministry of Economy in charge of registering, managing and promoting industrial property rights in Chile- granted our University an award in a ceremony led by Maximiliano Santa Cruz, Inapi´s National Director.

During the activity that took place at Inapi’s building, Santa Cruz highlighted the important role played by our University in producing creative innovations that contribute to our country’s development.

“Universidad de Santiago de Chile is absolutely essential to our patenting system. It has always been in the highest positions at the patent request ranking and this is not a coincidence: it is the result of serious intellectual property policies,” Inapi’s director said.

For Maximiliano Santa Cruz, our University’s interest in industrial property “is a powerful signal to its researchers, professors and innovators, in general.”

“I ask Universidad de Santiago’s innovators to continue creating new things and using the patenting system for it is a powerful tool to protect intellectual property,” he added.

Dr. Óscar Bustos, Vice President of Research, Development and Innovation (Vridei, in Spanish) of our University, who received Inapi´s award, showed himself very pleased with the position in the ranking at a national level.

“We are very satisfied with our exceptional position among the institutions that request for invention patents (…) We would have been happy to keep the second place like we did last year, but being among the main institutions that file patents requests in Chile is excellent news indeed,” Dr. Bustos said.

Pontifica Universidad Católica was at the first place in the patent request ranking while Universidad de Concepción was at the second place.

Finally, Vice President Bustos said that the high position of our University in the ranking reflects that “our researchers have become aware that not only scientific publications are important for our country: developing specific technological projects in key areas for Chile is important too.”

According to data provided by the Department of Technology Transfer of our University, during 2013, this state and public institution filed 11 invention patent requests in Chile, and at the same time, it filed other 42 requests with foreign agencies in charge of registering industrial inventions.

Translated by Marcela Contreras
 

International Scientific Journal dedicates special issue to researcher at Universidad de Santiago

International Scientific Journal dedicates special issue to researcher at Universidad de Santiago

  • The renowned Journal of Coordination Chemistry dedicated its issue 67 to Dr. Juan Costamagna, academic at the Faculty of Chemistry and Biology of Universidad de Santiago, for his contribution to the development of this journal since 2000, when he was invited to be part of the Editorial Board. The journal aims at disseminating the investigations of renowned researchers in the field of Chemistry of Coordination Compounds in countries like the United States, France, Argentina, South Africa, and Chile, among others. 

 


In recognition of his significant contributions to the development of the Journal of Coordination Chemistry and in the context of his retirement from the Editorial Board, the journal dedicated a special issue to Dr. Juan Costamagna, researcher at the Faculty of Chemistry and Biology of Universidad de Santiago.

The journal aims at disseminating the investigations of renowned researchers in the field of Chemistry of Coordination Compounds in countries like the United States, France, Argentina, Uruguay, South Africa, Spain, Italy, Mexico, and Chile.

Jim Atwood, who was in charge of issue 67 called “Special Issue: To honor Professor Juan Costamagna on the occasion of his retirement", highlighted in the opening pages professor Costamagna’s “valuable opinion” and his contribution over the years “with his expertise” to the development of this publication.

Atwood pointed out that Dr. Costamagna “has been a consummate collaborator and has brought his talent to the Editorial Board of this Journal; he has published over 100 papers in the field of Coordination Chemistry and has served 14 times as the Chilean delegate to the International Advisory Committee of the International Conference on Coordination Chemistry between 1974 and 2006. He was also an Advisor to the Nobel Prize of Chemistry from 1996 to 2000”. This is the background for this special issue available since December on http://www.tandfonline.com/toc/gcoo20/67/23-24.
 

Contribution to Science

The participation of Dr. Costamagna in the journal dates back to 2000, when he was appointed to the Editorial Board by the journal’s general editor.

Since then, Dr. Costamagna has contributed with countless academic evaluations and several plenary “Online Annual Meetings” of the Editorial Board. The journal has positioned itself as a model in the field of Chemistry of Coordination Compounds. “I think I have modestly contributed to this growth and development,” Dr. Costamagna said.

Regarding his plans in the editorial work, Dr. Costamagna said that he will continue working as emeritus editor for “Communications in Inorganic Synthesis”, an online journal sponsored by Universidad de Santiago.


Translated by Marcela Contreras

Reading comprehension in Chileans will be assessed through eye movement

Reading comprehension in Chileans will be assessed through eye movement

  • Researchers at Universidad de Santiago, in partnership with researchers at the University of California (USA), developed a software program that includes several applications to study reading comprehension in users of digital texts. They will analyze the reading tracks in students and professionals all over the country to understand the cognitive processes developed when approaching a text on screen.

 

New technologies have also had an impact on people’s reading habits, as a result of the widespread use of digital texts. However, according to different studies, this change has not improved reading comprehension in Chilean people.  Thus, researchers at Universidad de Santiago have developed a software program that includes several applications to study reading comprehension in users of this type of text.

“Reading comprehension is essential to any field of knowledge. If someone does not have a good reading comprehension level, it will be more difficult for him/her to understand science, mathematics and texts related to financial products or a contract, for example. For this reason, we designed computerized environments for users to develop information processing strategies that allow them to process this information in a way that eases their understanding,” Dr Héctor Ponce, professor at the Department of Accounting and Auditing and an expert in information systems, said.

To design these environments, Dr Ponce and other professors at Universidad de Santiago have developed several software applications to improve reading comprehension of digital texts by including information processing strategies, like note-taking, cause-effect diagrams, sequences and comparisons. These strategies were turned into applications that complement each other, proving the effectiveness of this technology.

The results encouraged researchers to conduct further research on how Chilean people read and understand. They are currently working on the Regular Fondecyt Project (1151092) “Facilitation of cognitive processes by means of different computer-aided information processing strategies: An eye movement analysis.”

“Although we process information in different ways, there area some repeated patterns that we are trying to identify through this study. This why we will asses the cognitive strategies that a person uses when reading,” the researcher explained.

“For this purpose, we will use a computer-connected device called ‘eye-tracker’. It detects where on the screen the user is looking at, it follows the eye movement and detects how long someone spends watching objective elements, like words, for example, or the eye movement track when processing a text, among other aspects,” he added.

To inquire into how strategies help in understanding a text, tests will be run with plain texts without strategies, and with other texts that involve individual and multiple strategies.

The research team includes experts in cognitive psychology, like Dr Verónica Figueroa, co-investigator and researcher at Universidad de Santiago, and Dr Richard Mayer, professor at the University of California (Santa Barbara), who is collaborating in the study.

The project implementation started in March this year and it will involve school and university students and professionals. The study is divided in three phases: first, the design of the material to be used; then, testing and data collection through the eye-tracking device; and finally, the analysis of the collected data.

According to Dr Ponce, the results of the study could have two potential impacts. One is the software improvement, as the most effective strategies could be assembled to understand what is being read. And the other, the possibility of improving the content presentation in textbooks and the presentation of specialized information, like the one related to online products sales, health care plans, and contracts, among others.

“In a society, it is very important for people to be able to understand what they read, as one of the natural consequences of a good comprehension is a better decision-making,” Dr Ponce stressed.

Translated by Marcela Contreras

Researchers develop a tool to assess environmental quality of urban settings

Researchers develop a tool to assess environmental quality of urban settings

  • In large cities like Santiago, the quality of life is strongly related to the quality of the environment of the urban settings we live in. This is the core idea of the study “Socio-ecological quality in urban settings: improvements for a human-scale sustainable environment. Municipality of Quinta Normal,” a Dicyt project developed by Dr Alexandre Carbonnel and Rodrigo Martin, both professors at the School of Architecture of Universidad de Santiago. The study seeks to provide a tool for assessing the quality of urban life, considering environmental conditions (thermal, acoustic, and atmospheric ones) at urban settings.

     

    “Socio-ecological quality in urban settings: improvements for a human-scale sustainable environment. Municipality of Quinta Normal,” is the name of the study conducted by Dr Alexandre Carbonnel and Rodrigo Martin, both professors at the School of Architecture of Universidad de Santiago. The project has been funded by the university’s Scientific and Technological Research Department (Dicyt, in Spanish) and it has the purpose of providing a tool for measuring the quality of urban life, considering environmental conditions (thermal, acoustic, and atmospheric ones) at urban settings.

    The first measurements will be done at the municipality of Quinta Normal, an area of the capital of 12.4 square kilometers wide, with a population of 105 thousand people, according to the national census of 2002.

    This municipality is significant for the study, as it displays several special characteristics: In spite of being close to Santiago Centro, it has several industries; it adjoins Quinta Normal Park, one of the largest green areas of the capital managed by the Municipality of Santiago; and it is traversed by some of the busiest streets of the city, like Matucana, Costanera Norte Highway, Avenida San Pablo, and Central Highway (General Velásquez).

    The first hurdle to be cleared was to define the study areas. For this purpose, the research team developed “a methodology to identify the use of the urban setting as of the use of transportation and schools, what will allow pinpointing the nodes of very intense use and measure their environmental quality,” Carbonnel said.

    In order to relate the urban environmental quality to the use of urban infrastructure and services, variables and indicators related to transportation, health care and education coverage, cultural and commercial spots, green areas, and others, will be analyzed. The researchers will use some software programs (QGis and Grasshopper3d) to cross-check the information and identify the places with higher people density and more use of space.

    Once they know the places with higher density and more use, they will measure the urban environmental quality. This process will be based on thermal, acoustic and atmospheric variables, providing a true and varied environmental record of the places to be studied 

    Study impact

    According to Dr Carbonnel, the study impact is aimed at “providing municipalities, regional governments and the community with an important information tool that includes environmental indicators to orient them at managing and making local public policies and to contribute to a better use of the funds invested in infrastructure.”

    Dr Carbonnel also said that this methodology will open doors to the creation of a new line of products. “These innovations should aim to democratizing environmental information, in agreement with the vision of the Smart City Lab research center of our university.” Both researcher work at this center, together with other professionals of the School of Psychology and the Departments of Industrial Engineering, Geographic Engineering, Electric Engineering and Computer Engineering.

    Translated by Marcela Contreras

Universidad de Santiago opens new research building

Universidad de Santiago opens new research building

  • With a space of 2,755 m2, the five-floored building will be home to the Center for the Development of Nanoscience and Nanotechnology, the Aquaculture Biotechnology Center and the Soft Matter Center. The cost of the building construction amounted to about CLP 5,000 million.

 

 

In a context in which Chile only invests 0.39 of its GDP in research, the President of Universidad de Santiago de Chile, Dr Juan Manuel Zolezzi, highlighted the importance of this new space that will contribute to research and development in the country.

“This is one of the state-of-the arts buildings in Chile with regard to university research and it is an incentive for new researchers to continue innovating in key areas for the development of Chile,” he said. He added that Universidad de Santiago de Chile is a leader in technology transfer.

Senator Guido Girardi, who heads the Challenges for the Future. Science, Technology and Innovation Commission of the Upper House, valued the work done by public universities.

“These universities take charge of basic sciences on their own. Particularly, Universidad de Santiago has had the wisdom to connect basic sciences to the problems of the country and to generate innovation to solve these problems,” he said.

A few months ago, Dr Girardi visited the Center for the Development of Nanoscience and Nanotechnology (Cedenna, in Spanish) where he met with professionals in this significant research field. After the opening ceremony he congratulated the university on the new facilities.

The centers

Representatives of the centers that will occupy the new facilities expressed their satisfaction with the architectural configuration of the building that facilitates research development.

Dr Francisco Melo, Head of the Soft Matter Center that gathers together scientists in the fields of Physics, Chemistry, Biology and Engineering, said that the new space will offer endless opportunities for a better science development and for positioning the university at an international level.

For her part, Dr Dora Altbir, Head of the Cedenna, said that the possibility of bringing together scientists from different fields will allow a more active collaboration than the one that the university has now.

Eugenio Spencer Ossa, Head of the Aquaculture Biotechnology Center (CBA, in Spanish) said that the new building will allow to further scientific research and contribute to improve domestic industrial production, like salmon farming.

Architecture

The Rector Eduardo Morales Santos Research Building, with a total surface of 2,755.15 m2, is located in the central campus of the university. Its design is a geometric reinterpretation of the heritage buildings of the institution designed by the architects Héctor Valdés, Fernando Castillo Velasco, Carlos García Huidobro and Carlos Bresciani and built between 1957 and 1967. The building’s name is a tribute to the first democratically-elected university president after the dictatorship.

 

Translated by Marcela Contreras

Plant biostimulant and fertilizer developed by students at Universidad de Santiago succeeds in the international market

Plant biostimulant and fertilizer developed by students at Universidad de Santiago succeeds in the international market

  • After the success of Nutrisato- an innovative natural fertilizer that increases by 50% the size of fruits, vegetables and plants- in the international market, its creators opened an agricultural additives company.

 

 

In his search for environmentally friendly biotechnological solutions, Alejandro Muñoz, biochemist and student at the Biotechnology doctoral program of the Faculty of Chemistry and Biology of Universidad de Santiago, developed an interesting plant biostimulant based on organic molecules which is able to increase fruits, vegetables and flowers twice their size in the same period of time.

Later, Carla Céspedes, an agronomist from Universidad de Chile, and Rodrigo Ferreira, student at the Commercial Engineering program of the Faculty of Administration and Economics of Universidad de Santiago de Chile, joined the project team and took the responsibility of placing the product in the agricultural market.

After the positive outcomes of testing Nutrisato in peppers and tomatoes, the students participated in the Brain Chile program contest and won the first place. They used the funds that they were awarded to continue developing the product to a level that they never expected: today, they have their own company called Ingeniería y Biotecnología Limitada, Atama Biotech Ltda.

Nutrisato in the market

After the Brain Chile Contest, they continued testing Nutrisato. They found that it was harmless to people and the environment and it also “doubled the size of the products, increased the production of fruits by 50% and the production of biomass in vegetables by 30%,” Alejandro Muñoz explained.

Carla Céspedes, who is responsible for the agronomic development of Nutrisato, explained: “The first products in which we tested the biostimulant were harvested in April, but after the contest, they were left abandoned in an area with Andean climate. In that context, we realized that the fertilizer reduced the cold stress in plants and enhanced their hygroscopic properties.”

Supported by recent tests, the researchers confirmed that the fertilizer worked in every product in which they used it, like spinach, celery, parsley, coriander, tomatoes, peppers, onions, cherry tomatoes and ornamental plants like tulips, roses and daisies.

Now they are testing the product in hydroponic lettuces and tomatoes, and in berries and citrus fruits, in Valdivia.

With regard to the marketing of the product, Rodrigo Ferreira, who is in charge of the company’s management and sales, says that they created Nutrisato Hogar, a product which is targeted at people who grow their own vegetables in home gardens. The product will be in the market soon.

The researchers say that they have enjoyed their work with Nustrisato, because they are doing what they like to do. For this reason, they have continued developing innovative products, like Raizato. “Raizato is a super soil enhancer that adds organic matter to the soil and enhances the growth of roots and leaves,” Alejandro Muñoz said.

Translated by Marcela Contreras

Academic creates active eco packaging to increase the useful life of berries

Academic creates active eco packaging to increase the useful life of berries

  • In the Southern Hemisphere, Chile is the largest exporter of berries. Therefore, national researchers focus their efforts on increasing their life, to allow these products to reach more distant markets. An eco active container which aims to contribute to this purpose has been generated at U. Santiago.

In 2008, Dr. Maria Paula Junqueira, academic at the Technological Faculty, committed herself  to making a contribution to the food area, and she was part of  the task of converting Chile into a food power. Thus, through a Fondef project, she tried to combat the limitations generated, particularly by the fungus Botrytis cinerea, in the so -called  berries, and this allowed their  extension of life.

The closing of the investigation "Life extension of fresh berries by using eco-active packaging” was held on Friday 19th at the Plaza San Francisco Hotel, where the results were presented to the participating institutions.

The eco active container has an antifungal agent in his film, which fights the fungus specifically mentioned. Also, it  is also friendly with the environment, because it is recyclable. To verify the efficiency of the invention, tests with raspberries and blueberries were tested in Chile, while in England raspberries and blackberries were used, because we are in different seasons.

Of all the berries used in the study, raspberries showed a better response to interact with the packaging, and this helped to extend its life in two days.

"We had a very promising result," the academic at the Department of Science and Food Technology remarked; she  added that "due to the final results of this research, an  initiative was taken in order to try with other fruits like grapes and strawberries and we already have companies which are interested in participating. "

Dr. Junqueira thanked the cooperation of the school, saying that she had "an unconditional support from the University from the start and then at all stages involved in  the project."

This work, which also involved Dr. Maria Angelica Bargains and Dr. Francisco Rodriguez, members of the same academic unit, gave birth to a patent application in Chile, which will also be replicated abroad soon.

Companies’ experience

In the presentation of results, representatives of the participating companies  were present. Enrique Harvgreaves attended in representation of  Typack company, a packaging  company. He said: "I do hope that this product is on the market soon.” He also thanked the opportunity to develop a collaborative work with the University.

Meanwhile, Alvaro Acevedo, from Vitalberry, referred to the contribution generated in the production process of these fruits during the investigation. "The market demands have pushed us to the improvement of production processes, and this has increased the quality requirements demanded for these products," he said. He also emphasized that this result "has a lot of potential; undoubtedly, it is a product to be applied massively".

Dr. Luis Magne, Head of Technology Transfer, attended on behalf of the Vice-President for Research, Development and Innovation. He said "we take on the challenge of leading the University on the path of innovation. The road has not been easy but  maturity has been achieved in the sense of understanding what technological research is. "

Luisa Martínez, financial analyst of the Fund for the Promotion of Science and Technology was also present in this event.

 By Valeria Osorio

Pages

Subscribe to RSS - Investigación