Investigación

Undefined

Researchers study improvements in properties of biodegradable materials

Researchers study improvements in properties of biodegradable materials

  • A plastic bag takes 1,000 years to break down. In light of this situation, biodegradable materials have become a good option. This is the context in which the study led by Dr Ana Carolina López Dicastillo, a member of the Center for the Development of Nanoscience and Nanotechnology of Universidad de Santiago, is being conducted. Thanks to the electrospinning technique, her research team will produce nanoparticles able to enhance the properties of biodegradable materials in order to obtain, in the long term, more eco-friendly packaging.

 

It is widely known that a plastic bag takes 1,000 years to break down, causing harm to the environment. Biodegradable materials are an alternative to solve this problem, because they are highly beneficial to the environment when they are adequately discarded. However, these materials do not have the same barrier and mechanical properties that petroleum-based products do, so they become fragile and highly permeable.

Thanks to the electrospinning technique, the research team will produce nanoparticles able to enhance the properties of biodegradable materials in order to obtain, in the long term, more eco-friendly packaging. The study is led by Dr Ana Carolina López Dicastillo, a member of the Center for the Development of Nanoscience and Nanotechnology of Universidad de Santiago, (Cedenna, in Spanish).

 

This Regular Fondecyt project, which is in its second year, seeks to improve the properties of a biodegradable material by incorporating nanoparticles produced by electrospinning to eventually use this material for food packaging. The electrospinning technique has not been frequently used in our country.

The electrospinning process allows obtaining fiber by means of the coaxial stretching of a viscoelastic solution. The diameter of the electrospun fibers ranges from microns no nanometers and they may have unique features.

Due to its interesting properties, this technique has been widely studied in the past few years for a wide variety of applications, like tissue engineering, the creation of special membranes and medical applications like dental implants and bone replacement. In this case, the project is oriented to enhance the properties of biodegradable materials for food industry applications. “Besides developing and working with nanoparticles and nanofibers, this technique allows encapsulating active compounds for their further release, what is also important in the food industry,” Dr López said.

The study seeks to enhance the essential properties of a biodegradable polymer and to create a biodegradable packaging with antioxidant and antimicrobial properties to protect food and to extend its shelf life.

Dr. López Dicastillo, who is responsible for the study, explains that “one of the expectations that we have with this work is trying to implement the concept of reducing plastic products in daily life, replacing traditional materials with biodegradable ones and the awareness of recycling and sustainability.”

She has the goal of making people aware of the problem posed by the plastic waste buildup and the need for replacing petroleum-based products with biodegradable materials, as petroleum is not a renewable resource.

“However, these (biodegradable) materials do not have the properties that the market demands yet. This is why we propose to enhance them and one of the solutions to this problem is nanotechnology. In our project, we are developing a type of nanoparticle that can make biodegradable materials properties to be similar to the ones of traditional plastic products in the market,” she said.

“We also intend to disseminate this study at different levels: from teaching children the importance of these existing biodegradable materials, emphasizing the need for recycling, to scientific conferences and presentations,” the researcher concluded.

 

Translated by Marcela Contreras

Researcher seeks to reduce the environmental impact of plastic containers

Researcher seeks to reduce the environmental impact of plastic containers

  • Plastic containers have caused an out-of-proportion environmental crisis all over the world. In this regard, Dr Alejandra Torres, professor at the Food Science and Technology Research Center is developing new containers with lower environmental impact through the Fondecyt Initiation Project (11140404,) “En la impregnación supercrítica de compuestos naturales en biopolímeros utilizados como envases de alimentos.”

 

The purpose of the study led by Dr Alejandra Torres is to inquire about new elements to produce new containers with lower environmental impact, by enhancing their properties through a novel process that involves the incorporation of substances that reverse the microbiological damage. Dr Torres is a professor at the Food Science and Technology Research Center (Cecta, in Spanish) and is member of the solid research team of the Packaging Laboratory of Universidad de Santiago (Laben, in Spanish).

The study was funded by the Fondecyt Initiation Project (11140404), ‘En la impregnación supercrítica de compuestos naturales en biopolímeros utilizados como envases de alimentos’.

According to the expert, through this initiative they will try to improve the production of food containers in three different areas: environment, new properties and new attributes.

The project addresses three essential aspects of research and development of new food packaging: the use of vegetal antimicrobial active compounds, the process to incorporate theses substances into the plastic material, and the material used to produce containers.

Currently, most of the plastic packaging used for food is made from petroleum-based raw materials. This causes a huge environmental impact for the plastic waste build-up.

“In the project, we will work with a biodegradable plastic material called polylactic acid, which is derived from renewable resources, such as corn. However, this type of material has some disadvantages. For example, it is highly permeable to water vapour, reducing the shelf life of products and/or increasing the risk of food-transmitted diseases,” Dr Torres says.

Incorporation of natural substances

A second important aspect addressed in this project is the incorporation of natural substances into packaging. These compounds come from essential oil extracts based on herbs, like oregano and thyme. They have antioxidant and/or antimicrobial properties that could extend the shelf life of the packed product and could keep its quality.

There are several ways of incorporating these substances into plastic containers. “One of the most common processes in food industry is the extrusion process. However, it usually requires high temperatures, resulting in the loss of the properties of the substances in the natural compounds,” the researcher says.

For this reason, this project intends to use the supercritical impregnation process as incorporation method.

This method has long been used in the field of medicine and one of its main advantages is that it does not require high temperatures, preventing the thermal degradation of the natural substances and, consequently, the degradation of its activity.

Regarding the expectations for this study, Dr Torres says that the results that they have obtained up to know are very interesting and promising for the development of new food packaging using more eco friendly materials.

Translated by Marcela Contreras

Universidad de Santiago experts propose a new method to generate constant and sustainable hydroelectric power

Universidad de Santiago experts propose a new method to generate constant and sustainable hydroelectric power

  • At the “Variabilidad Hidrológica en la Determinación del Caudal Ecológico” seminar held at Universidad de Santiago, Dr Matías Peredo presented a new model that allows small hydroelectric power plants to have a constant flow of river water.

 

During the “Variabilidad Hidrológica en la Determinación del Caudal Ecológico” seminar held at Universidad de Santiago, Dr Matías Peredo, professor at the Department of Civil Engineering in Civil Works, presented a new model that allows small hydroelectric power plants to have a constant flow of river water.

The method simulates a physical habitat that includes fish and also leisure time activities, like sport fishing. The purpose of this model is to provide a way of measuring how much water these small power plants require to keep constantly operating, without damaging the ecosystem and independently of rain shortages.

Current Chilean regulations establish that there always should be a specific water flow limit to preserve river ecosystems. However, Dr Peredo says that, just like flora and fauna vary according to dry and rainy years, water flow should change to preserve that ecosystem.

“If more water runs, the volume of water should be higher; and if less water runs, then the volume should be lower. What should not happen is to always keep the minimum volume of water stated by the national regulations, as this not sustainable,” he says.

He adds that the purpose of the model developed is to allow the possibility of bringing more water to generate hydroelectric power by means of variations in the ecologic water volume, and at the same time, to protect the ecosystem. “This is the reason why this is a sustainable energy development.”

The study results could propose more diverse ways of hydroelectric power generation, promoting the incorporation of small power plants.

“The goal is not to rely only on large power plants, but also on small plants, as they could contribute to meet energy demands during dry seasons,” he explains.

The study allowed to conclude that rivers naturally change their flows, as they are flexible. This is why in dry years, water volume should be reduced: to have a delta of water that could be used by small power plants.

For his part, Dr Juan Manuel Zolezzi, President of Universidad de Santiago de Chile highlights the importance of this study and the support that our university “gives to this type of initiative, through which professors can strengthen their academic and scientific networks to build knowledge at the service of our country.”

He said that the seminar “allowed to reflect on how to transfer the results and new knowledge to environmental assessment agencies and the market through training activities, seminars, conferences and the development of written material, among others.”

In this project, Dr Peredo worked in partnership with the Environmental Assessment Service (Servicio de Evaluación Ambiental, SEA), that requested and validated this work, and the Chilean Economic Development Agency (CORFO, in Spanish), that funded the project through a public goods for competitiveness contest.

The Department of Civil Engineering in Civil Works of this university, together with a multidisciplinary team of 25 professionals including hydrologists, geographers, biologists and experts in rural development and environmental engineers, worked at this project.

Translated by Marcela Contreras

Control of chemical reactions by means of quantum optics

Control of chemical reactions by means of quantum optics

  •     Physical Review Letters (PRL) will publish an article about this important development in the control of chemical reactions using quantum optics. In simple terms, Dr Herrera, researcher at Universidad de Santiago, explains that they proved that these reactions or electron transfers can be accelerated or reduced.

 

 

At the end of the month, the renowned American journal of Physics, Physical Review Letters (PRL) of the American Physical Society (APS), will publish an important discovery in this field made by Dr Felipe Herrera, professor at the Department of Physics of Universidad de Santiago de Chile, and Dr Francis C. Spano, professor at Temple University in Philadelphia, USA.

The article (“Cavity-controlled chemistry in molecular ensembles”) will highlight the development made by these researchers in the control of chemical reactions by means of quantum physics. In simple terms, Dr Herrera explains that they proved that these reactions or electron transfers can be accelerated or reduced.

Graphically, the model consists of an optical cavity surrounded by two mirrors that do not allow light to go through, “so the amount of energy is the minimum possible in an electromagnetic field. That is to say, there is cero or one unit of light energy, which is also called photon,” Dr Herrera explains.

Dr Herrera remembers that, at a first stage, they asked themselves about “the effects that the optical cavity could have on chemical reactions or electron transfers: if the cavity would accelerate them, suppress them or if nothing would happen at all.”

In this context, the researcher says that they finally “found a mechanism through which this quantum optical cavity can dramatically accelerate the reaction and electron transfer in molecules.”

The basics

With regards to this theoretical discovery, Dr Herrera explains the process: “First, there are two players: the electron that is going to be transferred and the vibration of the molecules that, in a way, affect how this electron is going to be transferred from one place to another. If there is too much vibration, the electron will be disturbed and the transfer will be inefficient.”

“When you add another factor, like the optical cavity, there is a third player: the photon, which will now interact with the electron inside the cavity,” he says.  

“We discovered that quantized light plays a game in which the electron becomes a photon and the photon turns again into an electron and vice versa. The game only occurs inside the cavity and it makes the electron to stop interacting with the vibration, eliminating or blocking vibrations,” he explains. 

With regard to what material inside the cavity accelerates or reduces the electron transfer, Dr Herrera says that they have tested organic materials or organic molecules, like the ones that form the human body. “This organic material could also be a protein, according to the experiments conducted by other researchers that have based their studies on our discovery,” he adds.

Physical Review Letters

The article about this development was first published in the online edition of Physical Review Letters and, at the end of June, it will be published in the print edition. Dr Herrera says this is a great honor for them, as this journal is the most prestigious one in the field of Physics.

 

Translated by Marcela Contreras

Researcher of Faculty of Chemistry and Biology joints editorial board of renowned scientific journal

Researcher of Faculty of Chemistry and Biology joints editorial board of renowned scientific journal

  • In recognition of his extensive career in the area of electrochemistry, Dr. José Zagal, professor at the Department of Chemistry of Materials, was invited to be part of the editorial board of Electrochemistry Communications, an international journal with the higher impact index in its field.

Dr. José Zagal, professor at the Department of Chemistry of Materials of our university, was selected to be part of the editorial board of Electrochemistry Communications, the renowned scientific journal partnered with Elsevier that has the higher impact index in the field of electrochemistry.

In a conversation with UdeSantiago al Día, the academic said that he understood his inclusion in the board as “recognition of my work over many years; but most important, the recognition of a work that has mainly been done by a team.”

Professor Zagal has a vast experience in the scientific research field, particularly in the study of oxygen and reactivity. He started to work at Universidad de Santiago 40 years ago and he has kept on publishing specialized articles in his field of interest since then.

Besides, he has been part of editorial boards of different scientific journals, like the International Journal of Electrochemistry of Hindawi Publishing Corporation, since 2011 and the International Journal of Biotechnology & Biochemistry (IJBB), since 2012.

Zagal said that it is very important that both students and academics produce publications in their fields and get involved in different creative processes “to contribute not only to this University’s development but to all the country.”

“I think that it is necessary that students in any program should take part in creative and practical processes, that is to say, they should get involved in laboratory work since their first years at the university, so that they produce new knowledge that can reach most of the people through renowned publications,” he said.

“Publishing research results is essential. When you make public the work you do, your work becomes recognized in that field and, at the same time, you spread new knowledge,” he added.

For this reason, professor Zagal expects that his role at the Electrochemistry Communications’ editorial board means a contribution to the promotion of sciences and to the better positioning of Universidad de Santiago de Chile.

“You stay at this university because you love it and not for the money. Many researchers here might well be working at private sector companies, but they stay here because they feel a real bond with this institution,” he said.

“For the love that I have for this University, I expect that my inclusion in the editorial board will benefit the institution and will contribute to spread knowledge among society,” Dr. Zagal concluded.

Translated by Marcela Contreras

Scientist at the Aquaculture Biotechnology Center discovers new information on mortality caused by the ISA virus

Scientist at the Aquaculture Biotechnology Center discovers new information on mortality caused by the ISA virus

  • A study by Dr. Mario Tello, researcher at this center, establishes a previously unknown relationship between an infectious salmon anemia (ISA) genome segment and its virulence.

The study by this researcher at the Aquaculture Biotechnology Center and the Faculty of Chemistry and Biology, University of Santiago de Chile, could provide important insights about how to predict salmon mortality by the ISA virus, a disease that affects Chilean aquaculture since 2007.

The research "Analysis of the use of codon pairs in the HE gene of the ISA virus shows a correlation between HPR bias in codon pair use and mortality rates caused by the virus" was published in the June issue of the Virology Journal, a specialized international publication.

The journal provides details of the investigation conducted by the University Of Santiago de Chile’s scientist who was able to identify the role and the relationship of a segment of the ISA virus by using bioinformatics tools and the existing literature.

According to Dr.Tello, the results of this study are one of the first hypotheses to explain why a highly variable region of the virus, called HPR (High Polymorphism Region), would be associated with the observed virulence.

 "Our results suggest that there is a region of the virus affecting its transmission and its ability to cause the disease. “That is to say, our analyzes suggest that there is a direct relationship between the mortality caused by the virus and the efficiency of its translation", Dr. Tello says.

According to the researcher, "the strain of the virus found in Chile would be one of the most efficient in the translation, and this would be directly related to an increasing mortality," and explain one of the possible reasons for the high mortality reported in our country.

Although the in vitro results have not been confirmed yet, the research is already an important step in deciphering the ISA virus characteristics, and it could provide solutions to the salmon industry. "Perfectly, these solutions could aim at generating a virulence predictor based on the analysis of the HPR region, a predictor in which we are working," the scientist says.

Researchers study the effect of global warming on Antarctic mosses

Researchers study the effect of global warming on Antarctic mosses

  • Through a Fondecyt Project led by Dr. Gustavo Zúñiga, a research team of Universidad de Santiago is carrying out measurements of the mosses at the Collins Glacier and the Ardley Peninsula, in order to analyze the impact of global warming on these populations and identify their tolerance mechanisms to resist environmental changes.

 



 

 

 

 

Dr. Gustavo Zúñiga, researcher at Universidad de Santiago; Marisol Pizarro, a graduate student of the Biotechnology PhD program of the Faculty of Chemistry and Biology, and  Gustavo Zúñiga-Líbano, an undergraduate student of the Biotechnology Engineering Program of the Faculty of Engineering, are now at the “Profesor Julio Escudero” base of the Chilean Antarctic Institute (INACH, in Spanish) studying the impact of global warming on Antarctic mosses in the context of the Fondecyt Project "Metabolomic responses of the Antarctic mosses Sanionia uncinata and Polytrichastrum alpinum to global warming".

While the researchers are in the Antarctica, they aim to establish a baseline with regards to the effect that global warming is having on the region and, particularly, to identify the environmental tolerance mechanisms of the Sanionia uncinata and Polytrichastrum alpinum mosses. In order to reach these goals, the study involves collecting samples and measuring the environmental variables in the Collins Glacier and the Ardley Peninsula.

“We must consider that the Antarctic Peninsula has been one of the areas most affected by global warming; in spite of this, there are no studies up to date regarding the response to this phenomenon at a molecular level and there are no studies that correlate the stress conditions that these species are enduring in the Antarctica, either,” Dr. Zúñiga explained. The study aims to describe the physiological and molecular changes caused by the increase in temperature, UVB radiation and the availability of water for these mosses.

The members of the Plant Physiology and Biotechnology Laboratory of the Department of Biology at the Faculty of Chemistry and Biology; Hans Köhler, a graduate student of the Biotechnology PhD program, and Dr. Rodrigo A. Contreras- who traveled in December to the Unión Glacier polar scientific station to work in the project by studying the lichens of the area– have also contributed to this study.

 


 

Significant contribution to the knowledge of human male sexuality

Significant contribution to the knowledge of human male sexuality

  • After a thorough study, a research team of Universidad de Santiago found the transmitter that causes ejaculation in men: the ATP (adenosine 5’- triphosphate).The study was led by Dr Juan Pablo García-Huidobro, professor at the Faculty of Chemistry and Biology. This work means an important contribution to modern medicine and it has already been published by Biology of Reproduction (USA), one of the most renowned journals worldwide.

 

The journal Biology of Reproduction published an article submitted by Dr Juan Pablo García-Huidobro, professor at the Faculty of Chemistry and Biology. The article is the result of the study in which he determined that ATP (adenosine 5’- triphosphate) is in charge of contracting the smooth muscles that form the vas deferens (which is in charge of carrying the sperm) that, through its mechanism, contracts reflexively and propels sperm forward.

The study involved a multidisciplinary scientific team and it opens big opportunities for modern medicine.

The study also intended to define if the ATP was responsible for contracting the circular muscular layer, which is in charge of preventing retrograde ejaculation.

“The ATP acts as a cotransmitter in the longitudinal muscles, but not in the circular ones, and from a technical point of view, it is interesting, because it shows that the circular layer is controlled by other mechanisms that we could not precise during this study. We were able to show that the ATP works as a powerful sympathetic cotransmitter in the longitudinal layer,” Dr García-Huidobro said.

The biological material used for the laboratory tests was obtained by means of an agreement between the research team and Clínica Santa María. “The biopsy tissues were from young healthy men that wanted a vasectomy as a contraception method,” he explained.

In a vasectomy surgical procedure, the vas deference is tied and the central portion is severed.

“We were able to get very good material for the biological study, because it came from young and very healthy people. We had to comply with all the ethical requirements involved and the informed consent procedures to conduct our study,” he added. 

Impact on human physiology

The study conducted by Dr García-Huidobro determined the precise mechanism in which ATP is involved.

“We were able to establish that the ATP receptor is located in a very specific part of the membrane of the longitudinal smooth muscles called lipid rafts. Then, we could find specific details on where this receptor is functionally located,” he said.

In this way, the study results open several new questions and possibilities to understand human physiology and its relation with modern medicine.

He said that it is important to learn what is involved in this physiological process because it could be related to fertility disorders or it could contribute to masculine contraception.

Now we learned that ATP is the key transmitter in the ejaculation process, professor García-Huidobro says that it could help to develop ATP-targeted drugs for clinical cases that require fertility aids or control.

Professor García-Huidobro highlights the importance of having multidisciplinary research teams and the value of socializing the information of the studies, in order to improve the cultural and scientific capital in the country.

“There are many details of the studies that remain secret. Many of these research works were conducted with the participation of different research teams, and this is very important, because wherever a study is conducted, undergraduate, doctorate and post-doctorate students are required. This variety of people is able to develop very innovative methods that have a training-effect, resulting in very notable research people. It is not just a professor by himself: it is a team that makes all these findings possible,” he concluded.

Translated by Marcela Contreras

Researchers at Universidad de Santiago revealed that the extension of the hole in the ozone layer reached record levels in December

Researchers at Universidad de Santiago revealed that the extension of the hole in the ozone layer reached record levels in December

  • After four weeks of work in the Antarctica, Dr Raúl Cordero and Dr Alessandro Damiani, both researchers at the Department of Physics of Universidad de Santiago de Chile, were able to confirm that the extension of the hole in the ozone layer over the Antarctica reached more than 10 million km2 in December 2015, i.e. more than twice the average of that period in the past three decades.

The measurements were carried out during a campaign in the Antarctic Circle in the context of the Antarctic Scientific Expedition of the Chilean Antarctic Institute (Inach, in Spanish). Dr Raúl Cordero and Dr Alessandro Damiani, both professors at Universidad de Santiago de Chile, were part of the expedition.

The ozone measurement campaign at the Antarctica started on November 15th and it continued until mid-December. Four researchers at Universidad de Santiago travelled to the heart of the White Continent, where about 600 kg of the best radiometric equipment available were sent.

The expedition was supported by Inach, what allowed the researchers to work at “Unión Glacier” Joint Polar Research Station located at 79 degrees South latitude, at about 1000 from the South Pole.

Constant monitoring

In spite of the negative results of this year, Dr Cordero expects that a process to recover the ozone layer starts in the short term, as a result of the actions taken worldwide to reduce the emissions of polluting gases. However, the information gathered highlights the need of adopting mitigation policies and conducting a constant monitoring of the area.

According to Dr Cordero, “the ozone layer depletion is mainly caused by the presence of ‘ozone destroying” chemicals in the polar stratosphere. These substances are generated by the industrial activity in mid-latitudes.”

Although these substances are everywhere in the planet, high latitudes are the most impacted areas by the layer depletion or destruction, particularly the Antarctica. During the southern spring, this area is affected by a massive destruction of the stratospheric ozone as a result of the particular weather conditions there.

According to the researcher, the ozone depletion process between September and December is favored by the low temperatures in the Antarctic stratosphere and by the Antarctic polar vortex that prevents the ozone from other latitudes from closing the hole.

“When temperatures increase at the end of spring, the ozone massive depletion stops and the weakening of the polar vortex allows the ozone from other latitudes to close the hole. The bad records this year are probably the result of unusually low stratospheric temperatures during last spring,” Dr Cordero said.

Recovery of the ozone layer

In spite of the negative results of this year, Dr Cordero expects that a process to recover the ozone layer continues until the middle of this century due to the actions taken worldwide to reduce the emissions of polluting gases. However, the information gathered highlights the need of adopting mitigation policies and conducting a constant monitoring of the area.

It is also worth to mention that this study included comparisons with databases of other months. According to this, the hole in the ozone layer reached 28 million kmin October, the fourth highest record since the satellite data is available. 

Dr Cordero also highlights the relation between ozone depletion and climate change. “The changes in the hole in the ozone layer could affect the energy balance of the Antarctica. Ozone depletion or exhaustion has affected the temperature of the stratosphere and it correlates with wind and surface temperature variations detected in the Antarctica in the past decades. Therefore, a better understanding of the relation between climate change and the hole in the ozone layer is required. This is the ultimate goal of our work,” he concluded.

 

Translated by Marcela Contreras

Unprecedented model of cyber security to combat new malicious software

Unprecedented model of cyber security to combat new malicious software

  • The purpose of the study conducted by Juan Fernando Mejía Calle, who graduated from a M.A. program of Universidad de Santiago, is that companies are able to automatically identify features in sophisticated files that are not recognized by common antivirus software. In this way, it will possible to manage the problem step by step and take remedial actions to be better prepared in the future.

 

 

John opens a file in his computer at work, and, unintentionally, he ends up infecting all databases in his company. How can he determine whether that file is effectively malicious or not? Although some of these pieces of software can only be detected by antivirus software, malicious codes evolve continuously until they cannot be recognized, making difficult to avoid them.

In this context, a model that allows to automatically detect the features of a malicious software or malware and then follow steps to combat them, taking remedial actions, was the result of a study conducted by Juan Fernando Mejía Calle, who graduated from the M.A. program in Security, Forensics and Auditing of IT Processes of Universidad de Santiago de Chile. Mejía Calle is an Ecuadorian expert, holder of a scholarship of the Government of his country to study this program.

His work, “Modelo de proceso para análisis, caracterización y clasificación de archivos ejecutables potencialmente maliciosos en un entorno organizacional con sistema operativo Windows,” will be a contribution to both the companies affected by these attacks and the organizations in charge of cyber forensics.

The study suggests a process to capture malware evidence based on the features of different types of programs, providing information “that allows to know if the file got connected to another site, executed other programs or became self-executable or if it got encrypted,” Mejía explained. After that, the files analyzed can be classified as clean or malicious.

“According to what I have studied, there is not any standard model for this purpose. Each author suggests a pattern based on his/her experience,” Mejía says. To conduct this study, he reviewed literature on malware and registered the features that he considered relevant to define it.

The model that he presented showed an effectiveness of 92% using the cross-validation method.

Mejía says that cyber-attacks in Chile are increasingly sophisticated. “New malware attacks or zero-day attacks can infect a computer because they have not been recognized yet. This type of attack cannot be prevented, but it can be analyzed to take future remedial actions,” he says.

Translated by Marcela Contreras

Pages

Subscribe to RSS - Investigación