Investigación

Undefined

Universidad de Santiago’s researchers selected by Corfo to get trained in Silicon Valley

Universidad de Santiago’s researchers selected by Corfo to get trained in Silicon Valley

  • Patricio Flores, PhD in Biotechnology, and Yu-Wen Tang, student at the Master´s program in Technology Management- Major in Biotechnology, both from the Faculty of Chemistry and Biology, were awarded a grant to develop a strategy for marketing an enzyme that has multiple benefits for diagnosing diseases.

As a result of the work they did for a doctoral dissertation and after being granted funds through the “Go To Market, de la Idea al Mercado” Contest organized by Corfo (the Chilean Economic Development Agency), the researchers will get trained in Silicon Valley, in the context of the third stage of the project “Developing a strategy for marketing a highly stable glutamate dehydrogenase (GLDH) enzyme.”

The project, which was developed under the guidance of Dr. Jenny Blamey, associate professor at Universidad de Santiago, proposes replacing the bovine GLDH enzyme with one from an Antarctic extremophilic microorganism (capable of resisting extreme conditions of temperature, pH, pressure, salinity, among others), which does not have the deficiencies of its predecessor. Its most common application is in the area of clinical laboratories where it is used for diagnosing hepatic and renal diseases

According to researcher Patricio Flores, “having discovered this new enzyme, glutamate dehydrogenase (GLDH), improves the half-life of five different types of diagnostic kits, as its thermal stability is higher than the one of the enzyme used today.” The academic stresses that “what is most important is that it also solves the problem of low half-life of the “old” diagnostic kits, preventing from discarding expired kits that have not been used, improving result reliability, lowering costs, reducing losses for companies and enabling a stock available to give a quick answer to market requirements.”

“The new enzyme is much more stable. It can be stored at room temperature, keeping more than 85% of its activity for 50 days. On the other hand, the bovine enzyme completely loses its activity under the same conditions,” Dr. Flores explains, regarding the results of this project that involves Universidad de Santiago and Fundación Científica y Cultural Biocencia.

Go To Market

“Go To Market, de la Idea al Mercado” is an initiative that seeks to identify research studies conducted at universities, technological centers and Chilean companies that have generated technologies that could potentially benefit the global market.

“The application process for the Corfo’s Go to Market Contest coincided with the last steps to finish my doctoral dissertation in which I developed the product prototype, that is to say, the GLDH enzyme from an Antarctic thermophilic microorganism,” Dr, Flores says.

At present, the project is at its third stage, which involves getting training at the Standford Research Institute (SRI), scheduling meetings with investors and interested clients and developing a marketing strategy to position the product in the market. These will be the activities that the two researchers will have while they stay in USA.

Translated by Marcela Contreras

University’s new contribution to develop wine production at Atacama Region

University’s new contribution to develop wine production at Atacama Region

  • María Angélica Ganga, researcher at the Technological Faculty, leads a project to make technological improvements to the Pajarete wine fermentation in Huasco Valley. The project has been funded through the Innovation for Competitiveness Fund and has allowed improving the quality of this traditional product and recovering its original properties.

 



It is said that Jesuits brought the Pajarete wine to the north of Chile during the 17th century. This wine is characterized by its sweet flavor and it is produced mainly from black and muscatel grapes of the northern part of the country.

In the last few years, the Pajarete production has had a significant increase due to a development plan that has allowed local producers to commercialize it in better conditions, thanks to a strategy that allowed producing a first-quality product, including appellation of origin (geographical indications).

In this process, the Atacama Regional Government and the Association of Pajarete Producers of Huasco Valley have worked together with Universidad de Santiago in a project to make technological improvements to this wine fermentation process in order to improve its competitiveness.

The project- funded through the Innovation for Competitiveness Fund of the Atacama Region- has been led by María Angélica Ganga, PhD in Biological Sciences and a researcher at the Technological Faculty of Universidad de Santiago.

The researcher says that the project focused in strengthening the Pajarete production through the microbiological control of the vinification process and the selection and identification of native yeasts.

This is how a microbial strain collection was created and yeasts with technological potential for production were obtained. Besides, a standard methodology for their use was developed and handed to wine producers.

The researcher explains that Pajarete producers contacted the University and expressed their concern for having lost part of the properties of their wine in their attempt to industrialize their process and also for using yeasts different from the ones of the Atacama Region, what led to losing part of their “terroir” (the set of characteristics that describe and define a geographic region where grapes are grown).

“So, we worked to return the organoleptic properties to the product by using yeasts from that region. Now, the fact of recovering these properties allows the producers to keep the hallmark of a wine typical of that region; it is something of their own that is not reproducible in other regions,” she explains.

Anberta Debia, a Pajarete producer and member of the Association of Pajarete Producers, considers that the most important achievement of this project is that old people at Huasco Valley identified this new Pajarete with the one that was produced in this area decades ago.

“When we started working with industrial yeasts, people did not identify themselves with the product. Now we know that everybody thinks that the wine is more tasty, more aromatic and with a more fresh-raisin flavor. The grape is reflected in a much better way and that gives us a plus,” she says.

According to the producers, now that the quality production stage has been completed the following stage is to commercialize the product.

Their first objective is to get their product distributed in Santiago and the rest of the country and then, start exporting.

Opportunities for the industry

At present, Universidad de Santiago is implementing a new project with the purpose of developing a sustainable production system to provide Pajarete producers with the amount of yeast required for the their wine making.

At the same time, the University is applying for a third project to help producers to assure the innocuousness of the product, in order to become competitive, not only at a national level, but also at an international one.

Nibaldo Guaita, who is in charge of the Production Development Area of the Atacama Regional Government, describes the work done as very positive. He says that the problem with this wine was related to the fermentation process, which affected its quality. Now he bets that Pajarete will become a premium wine.

“We want to position Huasco Pajarete producers as a national example, with a high-quality wine that can compete with other sweet wines. This product already has the best level possible and this will help to reach a better market,” he says

Nibaldo Guaita said that they have taken the Pajarete wine to different international fairs and that it has awakened interest, but on these occasions, a new big challenge has arisen: to increase the volume of production.

Translated by Marcela Contreras
 

Relating Biology to Society

Relating Biology to Society

  • “Entre biología y Utopía: Semblantes Ideológicos en las Ciencias de la Vida’ is the name of the Fondecyt Initiation project led by Dr Mauricio Espósito that will allow a synergy between biomedical research, communications and their future interactions. The study will last two years and it expects to prove the importance of the relations among different disciplines.

 

To analyze the historical and philosophical relation between biological knowledge and its multiple political, ideological and technocratic applications: that is the goal of the Fondecyt Initiation project led by Dr Maurizio Espósito. For this purpose, the academic at the Department of Philosophy of Universidad de Santiago will review some particular cases associated to sciences of life during the 20th and the 21st centuries, like the development of genomics in Latin America, for example.

Dr Espósito thinks that “it is very important to understand the philosophical and political implications of biomedical research beyond preconceived criticism, superficial exaltation of science or a merely abstract debate about what is right or wrong.”

According to him, some biological disciplines were formulated since ambitious scientific policies, which principles still cross with biotechnological utopias and contemporary ideologies.

“I think that many people speak about biotechnology or technology often criticizing or glorifying technological or scientific events without really understanding them. And understanding them does not only mean knowing the technical details unique to a discipline, but also having a definite idea about the controversies, interests, concepts, institutions and ambitions of the agents under the great umbrella that we call techno-science, that involves an interdisciplinary approach,” he says.

General guidelines

In this Fondecyt Initiation project, the academic expands his research line to address different national and Latin American cases. “I need to make clear that in this project, I am not interested in criticizing scientific events or proposing philosophical morals based on science-fiction fantasies. The project seeks to link up biotechnological research with the help of the history of science and the interdisciplinary tools given by the studies on science, technology and society,” he adds.

Among the possible options to spread the project information, Dr Espósito recognizes the value of the potential debate among the different disciplines of study and he adds that different activities will be organized, in which academics and the community in general will be able to participate, discuss and think about this issues.

Translated by Marcela Contreras

Researcher proposes new process to dry secondary sludge and use it as biofuel

Researcher proposes new process to dry secondary sludge and use it as biofuel

  •    Using secondary sludge from industrial water treatment, researcher César Huiliñir, professor at the Department of Chemical Engineering, developed a new mathematical method for the biodrying process that proposes to reuse this sludge as biofuel. This technology proposal is supported by a Fondecyt Initiation Project.

 

After three years of work using secondary sludge from industrial water treatment, researcher César Huiliñir, professor at the Department of Chemical Engineering, developed a new mathematical model for the biodrying process that proposes to reuse these residues.

The proposal is one of the results of his Fondecyt Initiation Project (11121160), “Development of a new dynamic model for batch biodrying process of dewatered sewage sludge”.

According to the researcher, the sludge disposed of by industries has 80% of water, i.e., for every kilo of sewage sludge, an amount of 800 grams of water is lost. Besides, companies have to pay for removing this waste to prevent accumulation of residues and potential odours in their facilities. For this reason, finding an alternative solution may reduce costs.

“We bet that, if we reduce the amount of water of secondary sludge, it can be fed as fuel into boilers. That is why companies like paper mills can be benefited: if this works, it will allow them to reduce removal costs. We could use that sludge, burn it, and change it into a new type of biofuel, as it has already been done in Holland and Canada, where there are specific examples of mills that have implemented similar systems,” he said.

For this purpose, professor Huiliñir and his research team proposed a mathematical model- very easy to implement- that enable a more flexible system to better predict the moisture loss in the system. Up to now, there was not literature on this factor that could effectively enhance this operation.

Results of the study

Professor Huiliñir said that another contribution of this study was the background information they were able to collect on kinetics of volatile solid residues degradation. There was not any information about this in the literature of the area.

“With this (information), we will able to know how much energy is used in the process. The higher the solids consumption, the higher the energy released to dry the sludge. This will allow predicting behaviours and evaluating without having to experiment,” he said.

He could also analyze the amount of water and energy required to remove the water content through the different stages of this degradation process. “In the study, we built an experimental design in which we established how some conditions affect the dewatering operation and how much of energy that allows water evaporation comes from the chemical reaction in the process,” he added.

In order to develop this alternative model, they worked with sludge from paper mills. Now, they are working with water treatment sludge from a slaughterhouse and a meat packing plant.

Finally, professor Huiliñir highlighted the role played by undergraduate and graduate students, who were in charge of the laboratory work to test this model. “The students’ contribution was essential. Without them, we wouldn’t have been able to develop this project and get these results,” he concluded.

Translated by Marcela Contreras

 

Professors at the Department of Education were awarded international research grant

Professors at the Department of Education were awarded international research grant

  • With a project that involves the use of ICTs in early teacher training, professors at the Department of Education Juan Silva and Paloma Miranda, won the first place in the international contest of the Education Sector Fund, in the "Digital Inclusion” Mode. 

 

 

Juan Silva and Paloma Miranda, both professors at the Department of Education, were awarded an international research grant by the Government of Uruguay for a project that involves the use of ICTs in early teacher training.

Professor Silva is Director of the Center for Research and Innovation in Education and ICT (CIIET, in Spanish) of Universidad de Santiago, and professor Miranda is Head of the Primary Education program at this same university.

The contest was organized by the National Agency for Research and Innovation of the National Commission for Innovation, Science and Technology (Conicyt, in Spanish) of Uruguay.

International contest

This was an international call for proposals and 34 projects were presented, but only 12 were selected for funding. The proposal of professors Silva and Miranda won the first place.

The team is made up of the two Chilean professors and Uruguayan and Spanish researchers and experts.

The project was designed to meet the need of developing digital skills, both to teach and to learn using ICTs, during early teacher training, so that future teachers are able to successfully include ICTs in their professional activities.

The development of these skills should be constantly evaluated to make improvements and promote institutional policies in this matter.

Objectives

The objective of the project is to compare the level of performance on digital skills - for teaching and learning- of final-year students at early teacher training programs in higher education institutions in Uruguay and Chile, and generate recommendations to enhance the inclusion of ICTs in this stage of training. The results will be shared with other countries of the region.

Particularly in Latin America, empirical studies on the subject are scarce. There is evidence of public policies for the inclusion of ICTs in early teacher training and examples of good practices, i.e., if policies and their orientations are defined, and what the institutions are doing in this regard.

Besides, there are proposals for models and standards and studies on how students perceive the inclusion of ICTs in early teacher training, considering the technology available, the use of technologies by students and teachers, among others.

However, in spite of the above, there is not any study that reports on the level of performance on digital skills of students at teacher training programs. 

 

(Photo)

The project involves the use of ICTs in early teacher training

 

Translated by Marcela Contreras

Researchers at Universidad de Santiago develop innovative LED communication device for underground mining operations

Researchers at Universidad de Santiago develop innovative LED communication device for underground mining operations

  • The system will allow sending text, audio and video messages over long distances and at high speeds in underground mining operations. The project is led by Dr Ismael Soto, director of the Getic Laboratory of the Department of Electrical Engineering, and Dr Carolina Lagos Aguirre, alternate director of the project.

 

 

The system consists of a new device about the size of a cell phone that will enable good communications in underground mining operations by sending text, audio and video messages over long distances and at high speeds. 

Tech-Lifim (communication technology through visible light in mining operations) is a LED light-based device that transmits and decodes data through light pulses. The project is one of the research works conducted by the Department of Electrical Engineering of Universidad de Santiago de Chile.

The study is being developed by the Getic Laboratory of Universidad de Santiago (which is focused on digital signal processing for wireless communications), led by Dr Ismael Soto and Dr Carolina Lagos Aguirre, with the participation of graduate and undergraduate students at the university.

Exploring new needs

The project was started in 2010, when links were established with the Chuquicamata Division (the largest open pit copper producer in the world) of de Chilean’s National Corporation of Copper (Codelco, in Spanish), with the purpose of conducting studies on copper mining. “We gathered information about their needs and one of the issues they mentioned was the lack of communication devices, particularly for underground mining operations,” Dr Lagos says. “They asked us to develop a device able to transmit data at high speed and under adverse conditions, like high temperature, high humidity, dust and smoke.”

The research team established a strategic partnership with the company Control & Logic and started to work on the device. For a year and a half, they have continued with the research work, performed some tests and given presentations in Chuquicamata. “The device can be placed on the workers’ helmets, on underground tunnels’ walls and on trucks, to guarantee a simultaneous communication,” she says.

Global impact

According to the researchers, the system, which is currently at the production stage, is very efficient and meets the workers’ safety requirements.

Universidad de Santiago de Chile has already filed a patent request in Chile for this product. The next step will be filing a request abroad, because of a global underground mining project led by Codelco that will be started in 2019, based on the systems being implemented in Chuquicamata now,” Dr Soto explains.

In this context, they have created a company supported by the Innovo Usach business incubator. “We have the goal of placing the product in the market and start its commercialization in January 2017. Although we have worked with Chuquicamata for now, the device will be available for everyone who needs it,” the researcher says.

Other studies

This communication device is an example of the many studies that this research team intends to conduct. “We are also developing a lighting system for underground mining operations that will be available in the years to come,” Dr Soto says.

Besides, the research team is working on other projects in collaboration with foreign institutions like Northumbria University (England), the Oil and Gas University of Ploiesti (Romania) and the University of Lorraine (France).

Translated by Marcela Contreras

Food protective film is developed using local byproducts

Food protective film is developed using local byproducts

  • Universidad de Santiago’s interdisciplinary research team, led by Dr. Silvia Matiacevich from the Technological Faculty, is focused on developing an edible film that could increase the shelf life of fresh foods by 30%.

Improving the way of preserving foods has been a permanent concern in food industry. This is the reason why packaging is essential for the quality and shelf life of the product. But this packaging should be in harmony with the environment.

In light of this situation, a sustainable alternative for food packaging has been developed: food covering edible films, which are being widely used and have become a world trend nowadays. At Universidad de Santiago, an interdisciplinary research team is trying to replicate this development, giving value added to different national byproducts.

This initiative will be viable thanks to the Associative Dicyt Project called “Bioactive Coatings for Foods”, which gathers together experts from different faculties of the University.

“We will use food industry byproducts which are considered as dispensable or waste material. We are going to give them a value added by adding antioxidant and antimicrobial components to them in order to increase the shelf life of fresh food products,” Dr. Daniel López says.

Academics from three different faculties gathered for this purpose: Dr. Rubén Bustos, from the Faculty of Engineering (Department of Chemical Engineering); Dr. Diego Venegas and Dr. Marlén Gutiérrez, from the Faculty of Chemistry and Biology (Department of Materials Chemistry); and Dr. Daniel López and Dr. Silvia Matiacevich, from the Technological Faculty (Department of Food Science and Technology), being Dr. Matiacevich the leader of the project.

During the two years scheduled for the project, the researchers plan to study the synergistic effect of this combination of products and they expect to increase food shelf life by over 30%.

Interdisciplinarity

Most of the academics related to this project are part of a larger group created by the end of 2013 called Indi, Asociación de Investigadores por el Desarrollo e Interdisciplinariedad of Universidad de Santiago de Chile, a group of researchers that promotes development and interdisciplinarity at the university.

“All of us have participated in some of these initiatives at some point, seeking for this interdisciplinarity. This is how we have met other people and created contacts. What is good is that more than just admiring the work of others, we have the real possibility of conducting studies together. For this reason, we value this type of projects, as they promote the integration and interdisciplinarity that define a university,” Dr. Matiacevich says.

Translated by Marcela Contreras
 

CECTA will be in charge of certifying the quality of meals at schools of the Metropolitan Region

CECTA will be in charge of certifying the quality of meals at schools of the Metropolitan Region

  • The Food Science and Technology Research Center of Universidad de Santiago was awarded a public bid called by Junaeb to evaluate the quality and safety of food rations provided by schools at the Metropolitan Region. According to Claudio Martínez, the Director of the Center, “this shows that our accredited laboratories and our professionals are able to face challenges that involve high responsibilities.”

 

In December 2013, the laboratories of the Food Science and Technology Research Center of Universidad de Santiago (CECTA; in Spanish) were accredited by the National Institute for Standardization.

On August 1st, for the first time after this official certification, CECTA was awarded an important bid called by the National Board of Student Aid and Scholarships (Junaeb, in Spanish). As a result of this, CECTA will be in charge of analyzing the meals that are daily delivered to public schools, preschools and nursery schools in the Metropolitan Region.

Katy Yáñez, the Chief of the Physical and Chemical Analysis Laboratory and project leader, explained that samples of the food rations served for breakfast and lunch at 55 educational establishments of the Metropolitan Region and samples of 40 raw- material storage facilities will be analyzed over three months.

“At our Microbiology Laboratory and Physical and Chemical Analysis Laboratory (both with ISO 17025 accreditation), and together with an external laboratory that was subcontracted for the sample collection work, we will analyze the samples collected from food suppliers and schools in order to establish if these foods have the nutritional value and calories required and, in general, if they meet the microbiological parameters set by Junaeb,” she said.

A higher challenge

According to Claudio Martínez, Director of CECTA, the fact of being awarded this public bid called by Junaeb is “an important step for our University and for our Center, because, just to bid on this tender, being accredited as a high-scientific standard laboratory was required.”

“For a long time, CECTA has been working in strengthening its professional quality by implementing relevant policies and developing several improvements. Therefore, having been awarded this bid shows that our accredited laboratories and our professionals are able to face higher challenges that involve high responsibilities,” CECTA’s Director pointed out, adding that the following step “is just doing the high-quality scientific work that characterizes us.”


Translated by Marcela Contreras

Researchers study genes of Chilean native yeasts to optimize wine fermentation

Researchers study genes of Chilean native yeasts to optimize wine fermentation

  • The Regular Fondecyt Project “Mapping underlying genetic variants in nitrogen assimilation in different natural yeasts” led by Dr Claudio Martínez, researcher at the Food Science and Technology Research Center of Universidad de Santiago, proposes a new wine fermentation method that will not depend on nitrogen levels in the must. The study will last until 2019 and it involves the participation of researchers at the Department of Food Science and Technology of Universidad de Santiago and foreign experts from the CNRS in Nice (France) and the Instituto de Agroquímica y Tecnología de Alimentos in Valencia (Spain).

Yeasts are essential for wine fermentation as they turn grape sugar into alcohol. However, current industrial yeasts do not guarantee the completion of the fermentation process, resulting in economic losses for the national wine-making industry.

“It is estimated that about 40 per cent of the fermentation processes are interrupted, with a very strong impact on the industry. If you interrupt the process, thousands of litres will not ferment, so you need to spend more money to complete the process by adding more yeast or nutrients. This affects the wine properties and the quality expected,” Dr Claudio Martínez, director of the Food Science and Technology Research Center of Universidad de Santiago (Cecta, in Spanish), said.

To solve this problem, Dr Martínez and researchers at Universidad de Santiago are currently conducting the Regular Fondecyt Project “Mapping underlying genetic variants in nitrogen assimilation in different natural yeasts,” that will last until 2019.

“For yeasts to develop and work well, the abundant presence of some nutrients, like nitrogen, is required. As some musts have low levels of nitrogen, yeasts there do not grow well and the resulting product is not good. We will study the genes of Chilean native yeasts and foreign yeasts, searching for the ones that allow the yeast to assimilate nitrogen without considering its levels, and ferment the must efficiently,” he explained.

The yeasts described have been collected by the researchers at Cecta during the past decade, what allowed obtaining the most complete yeast strain collection of the country. With this register and through a previous Fondef Project, the Cecta developed a yeast strain, Fermicru XL, which has already been patented and commercialized worldwide.

“This new study has the purpose of identifying the genes with the features previously described to genetically improve industrial yeasts, something that has not been done before in Chile. First, we will search for the genes with the features we want in native yeasts and then, we will enhance an industrial strain, without using transgenic techniques,” he said.

The project will have the collaboration of Dr Amparo Querol of the Instituto de Agroquímica y Tecnología de Alimentos (IATA), in Valencia, Spain and Dr Gianni Liti, of the National Center for Scientific Research, (CNRS, in French), in Nice, France. Both centers will work on the genetic enhancement of yeast and the development of procedures for genetic investigation. Besides, they will allow access to their own collections of yeast native strains.

“They have yeast strains that they have collected from all over the world, representing more than 70 per cent of the world’s genetic varieties of yeasts. This is a very important genetic source that we will have available when conducting our study,” he added.

Dr Angélica Ganga, professor at the Department of Food Science and Technology; Dr Francisco Cubillos, researcher at Cecta; Dr Álvaro Díaz, of Universidad Católica de Valparaíso; and Dr Cristián Araneda, of Universidad de Chile, will also be part of the research team.

“It is important to study native yeasts. We assume that they have adapted to some environmental factors, so their properties can be potential solutions for the industry. This opportunity to study them allows us to progress in solving some issues, to develop genetic enhancement, and if everything goes as expected, to patent future yeasts based on native strains of our country,” Dr Martínez concluded.

Translated by Marcela Contreras

 

Researcher at Universidad de Santiago developed a new immunotherapy for cancer

Researcher at Universidad de Santiago developed a new immunotherapy for cancer

  • The new therapy involves the development of a vaccine that provides the immune system with the tools needed to “attack” cancer cells, improving the antitumour response of the body. The therapy was announced to foreign media correspondents accredited in Chile.

  • The study is funded through a Fondecyt Project and it is at preclinical stage. It considers a significant decrease of more than 70% in the overall cost of therapies for this disease.
  • The leader of the project, Claudio Acuña, Dr in Biomedical Sciences, researcher, and Head of the Department of Biology of our University, gave us some details on this new technology, which is applying for a patent in USA with the support of Corfo.
  • Dr Acuña said: “We are generating a quite effective therapy for cancer through which we could make immunotherapy more available to people. We are doing this in a university which is known for its social responsibility signature. In this context, I would like to highlight the talent of my students involved in this project.”

 

In order to optimize cancer therapy and contribute to public health in our country, an innovative and significant treatment developed at Universidad de Santiago has recently been presented.

This project involves the development of a vaccine that will allow destroying cancer cells in the body by enhancing its immune response.

This scientific development- funded by the National Fund for Scientific and Technological Development, Fondecyt- considers a significant decrease of more than 70% in the overall costs of cancer therapies and it has shown an efficacy of 50%.

Dr Claudio Acuña, Head of the Department of Biology of Universidad de Santiago, is leading the project. “We want to have a vaccine available to protect us from the disease, just like in the vaccination process for measles and other diseases when we are children. In the case of cancer, our idea is to get people vaccinated so that they are able to eliminate cancer cell in their bodies, he said.”

Quality of life

According to the researcher, the project “Seeks to improve the quality of life of patients in the long term and generate a supplementary therapy to conventional treatments to resist cancer in a non-conventional way, which is currently treated with chemotherapy.”

“We have completed the preclinical stage (trials in living animals) which showed that the vaccine does protect from the disease. The next step is the clinical phase, in which it will be tested in human subjects. There was not any negative effect on animals, so we could extrapolate that there will be not any effect on patients,” he added.

“The ultimate goal is to generate a vaccine for people with cancer that will allow enhancing their immune response to tumours,” he said.

We are generating a quite effective therapy for cancer in which we could make immunotherapy more available to people. We are doing this in a university which is known for its social responsibility signature. In this context, I would like to highlight the talent of my students involved in this project,” the scientist said.

 

“We were able to make it because the University enables, favours and promotes these innovation processes, besides providing the confidence to conduct high-level research,” he added.

 

Dicyt project

Dr Acuña’s meeting with foreign media correspondents was in the context of the activities of a Dicyt Public Opinion Project of Universidad de Santiago, led by Gabriela Martínez Cuevas, professor at the Department of Journalism.

 

Professor Martínez highlighted the interest of Fundación Imagen de Chile in contributing to promote the significance of this study among a group of accredited correspondents in Chile.

“Due to the strategic partnership that we developed with Fundación Imagen de Chile last year in a similar project, we have been able to arrange the first of a series of conferences with foreign accredited correspondents, during 2015,” professor Martínez said.

“This body has the purpose of managing the “nation branding”, so we have joined efforts to strengthen our “U de Santiago brand” around the world through our scientists,” she added.

Gabriela Martínez, who is also Director of the Communications Department and the institutional radio station said: “Today, the interest of the international press for learning about this study led by Dr Claudio Acuña was evident, and he insisted on the importance of the contribution made by the young researchers that he is training.”

She said: “There were correspondents of all the agencies in Europe, China and Latin America. We expect to see how they inform the world about this new contribution made by our state and public University, which is committed to the country progress and gives solutions to urgent demands beyond our borders. This was specifically demonstrated with this cancer vaccine.”

The project- which is at its preclinical stage- is based on effects of Polymixin B. It has already shown its first results in lymphoma, melanoma and breast, with an effectiveness of almost 50%. Besides, it is worth to mention that this technology could decrease the cost of current traditional cancer therapies by up to 70%.

With the support of the Chilean Economic Development Agency (Corfo, in Spanish), this technology is in the patenting process both in Chile and USA, to then continue to the clinical stage and to exporting the treatment.

Fundación Imagen de Chile

According to its web page, Fundación Imagen de Chile is an autonomous institution funded by public resources, created in 2009, with the purpose of coordinating and organizing the efforts to promote the image of Chile abroad.

Its responsibility is to mange the “nation branding”, by coordinating the work of the main sectors that contribute to build this image, such as culture, sports, exportations, investments, tourism and international relations, among others. For this purpose, the foundation develops strategic partnerships with public and private agents to coordinate the image of the country and actively position the distinctive features of our identity.

Translated by Marcela Contreras

Pages

Subscribe to RSS - Investigación