Investigación

Undefined

The project gathers 15 institutions of Chile, USA and Europe, like Cedenna, and seeks to develop, analyze and test new therapies for treating colorectal cancer by means of magnetic nanostructures. The initiative also has the purpose of promoting human ca

The project gathers 15 institutions of Chile, USA and Europe, like Cedenna, and seeks to develop, analyze and test new therapies for treating colorectal cancer by means of magnetic nanostructures. The initiative also has the purpose of promoting human ca

  •  The project gathers 15 institutions of Chile, USA and Europe, like Cedenna, and seeks to develop, analyze and test new therapies for treating colorectal cancer by means of magnetic nanostructures. The initiative also has the purpose of promoting human capital exchange, technology transfer and the creation of new knowledge.
     

15 organizations, including the Center for the Development of Nanoscience and Nanotechnology (Cedenna) of Universidad de Santiago de Chile, joined to form the Magnamed consortium and respond to the call by the EU’s research grant program that will fund the project for at least four years. Other members of the consortium are the Complutense University of Madrid, the University of the Basque Country, the University of California, San Diego and IMG Pharma. The goal of this group is to work in collaboration and find new methods to treat colorectal cancer using state-of-the-art magnetic nanostructures to directly target and destroy tumor cells and avoid the side effects of treatments like radiotherapy and chemotherapy.

“Nanotechnology has a strong impact on different aspects of daily life. Its applications are expanding and being increasingly enhanced, reaching fields like medicine, where the search for new cancer treatments has gained interest and raised expectations, as conventional therapies are still expensive and complex and their side effects leave deep marks in the body,” Dr Dora Altbir, director of Cedenna, says.

The challenge is to create nanometric-sized disc-shaped structures that can be introduced in the body to destroy malignant cells thanks to their magnetic properties, without affecting healthy cells. This type of therapy has been studied for a while, but elaborating magnetic nanoparticles that effectively interact with biosensors and which are not derived from biotoxic materials has made the European Union to promote international cooperation among universities, research center and laboratories around the world to find new solutions and reduce cancer mortality.

“For Cedenna, the fact of participating in this project represents an opportunity to contribute with a potential solution to one of the most catastrophic and fatal diseases, to learn, and to work in collaboration with different institutions. This will give us the possibility of transferring that new knowledge and share with other scientists,” Dr Altbir says. The center was already awarded funds to collaborate.

Selective treatment

An effective treatment at an early stage of the disease is key to reducing mortality in some types of cancer like colon or rectal cancer. The challenge in clinical trials lies in that cancer cells are difficult to detect because of low concentrations of tumor biomarkers, which become perceptible at advanced stages. But the most common treatments are aggressive and non-selective.

Magnetic nanoparticles bind to malignant cells, contributing to early cancer detection. However, as their application is limited, Magnamed will explore the potential of emerging technologies based on magnetic nanostructures, which design can result in a better response.

 

Translated by Marcela Contreras

International organization’s compendium on ICT and Education includes work by academic of Universidad de Santiago

International organization’s compendium on ICT and Education includes work by academic of Universidad de Santiago

  • The Latin American Network of Educational Portals included the work done by Dr. Juan Silva, director of the Center for Research and Innovation in Education and ICT (CIIET, in Spanish), in a publication that gathers together renowned Latin American experts in this field.

Professor Juan Silva Quiroz’ work was selected by the Latin American Network of Educational Portals (Relpe, in Spanish) to be included in a recently published compendium that gathers several papers and reflections on the use of technologies in the educational process. The name of the book is “Mirada Relpe: Reflexiones iberoamericanas sobre TIC y Educación” (Relpe’s view: Latin American reflections on ICT and Education), and it started to be developed in 2011.

Dr. Silva reflects on the relation between Information and Communication Technologies (ICT) and education policies, particularly in the incorporation of these ICT in the Early Teaching Training (FID, in Spanish) process, as he considers them a determining factor to improve the quality of education, by training professionals in this field and enabling them to understand these tools and implement them in the classroom.

Relpe’s initiative has the purpose of establishing a regional view on how technologies are understood in education.

In the same way, professor Silva highlights the international significance of this initiative, as it provides different points of view on this matter. “Two of us wrote about ICT in teacher training; other expert wrote about videogames and another one wrote on Personal Learning Environments (PLE), etc. It is then a wide variety of work subjects or problems about technology and education presented, referenced or argued by leaders in this field,” he said.

He also added that the book includes some subjects that should be addressed since university education, particularly, in teacher training.

Potential of ICT tools

Regarding the advantages of using collaborative tools like ICT, professor Silva said that most of the teachers, especially at university level, do not see the potential of ICT tools, in terms of having opportunities to share knowledge at a national and international level. Assignments and presentations, he explained, can be modified and improved and will always be available in Prezi, blogs and Wikis, for example, under the logic of Web 2.0.

He also said that these participative and collaborative models are very useful, especially in teaching, which is normally perceived as an individualistic work. “In the traditional model, the teacher presents knowledge and students receive it. On the other hand, in a collaborative model, the teacher acts as a facilitator, as a mediator, and students have an active role in their knowledge- building process,” he added

Nowadays, Dr. Silva is part of a commission set up by the Ministry of Education to address the inclusion of ICT in the training of future teachers, and soon he will publish a book about different experiences of using ICT in early teacher training in Latin American, thanks to a teaching innovation project of the Academic Vice Presidency and sponsored by the Ministry of Education’s Center of Education and Technology (CET, in Spanish).

Translated by Marcela Contreras
 

Researcher from Engineering studies the mechanics of arteries

Researcher from Engineering studies the mechanics of arteries

  • The increase in cardiovascular diseases and the lack of reliable information, on the mechanical capacity of the arteries, became the engine of a promising research led by Claudio Garcia, professor  in the Department of Mechanical Engineering.
  • "Normally, engineers work with steel, concrete, industrial materials, and leave aside those materials with unknown behaviors," the expert says. He claims that his study of the aorta artery can become a tool for "predicting dangerous states in patients. We want to help physicians in taking decisions when performing an operation," he says.


According to the World Health Organization (WHO), the leading cause of death in the world is related to cardiovascular diseases. These pathologies do not distinguish gender and they affect mostly people in poor or developing countries.

In this context, he estimates that about 23.6 million people will die in 2030, due to cardiovascular complications; that is why the study led by Dr. Claudio Garcia –professor in the Department of Mechanical Engineering of the University of Santiago- is very relevant. He seeks to quantify the effects of the diseases and the age in the arteries, particularly the aorta, one of the main arteries of the human body.

This year, he presented part of his findings in an ISI publication, entitled "Mechanical Behaviour and rupture of normal and pathological human ascending aortic wall," which appeared in June in the Medical & Biological Engineering & Computing journal.

He explains that arterial mechanics defines the structural and functional capacity of the arteries, and it can be studied to obtain new information about their behavior and how the mechanical properties affect the diseases or the patients’ age.

"Our idea was to identify and assess the properties of the materials that make up this blood vessel and try to differentiate how it is affected by age or various diseases. We wanted to know how these factors alter the properties of the material that constitute the aorta,” Dr. Garcia says. He began this research in his doctoral thesis, a study about the properties of biomaterial at the Polytechnic University of Madrid, an organization that has provided resources for his research, which also has the support of a FONDECYT grant.

According to this professional, his interest in finding out about this health subject arose during his stay in the European country, where he felt motivated "by the permanent interaction with physicians who wanted to understand how the diseases affect this kind of biological materials. In their view, having an index to predict rupture states is important because, most of the time, the criteria used by doctors are only the arteries size or diameter. "

"Normally, engineers work with steel, concrete, industrial materials, and leave aside those materials with unknown behaviors." Research to establish and study how they behave is just starting," the expert says. Then, he refers to one of the main conclusions of his study, which released the mechanical properties of materials that were unknown. He points out that the main difference among patients is the age. As people become older, the arteries become less elastic and the mechanical resistance drops significantly, so they are more prone to rupture.

The importance of this information is to "predict dangerous states in patients. We want to help physicians in taking decisions when performing an operation," he says.

 

Researchers at Universidad de Santiago were part of the INACH scientific expedition to the Antarctica

Researchers at Universidad de Santiago were part of the INACH scientific expedition to the Antarctica

  • Academics at the Department of Physics, led by Dr. Raúl Cordero, were part of the scientific expedition made in November by the Chilean Antarctic Institute to Unión Glacier and they contributed with valuable measurements of the optical properties of snow.
     

Although researchers who belong to Dr. Cordero’s group were pioneers in the Unión Glacier area when they carried out several measurements in December 2012, the scientist points out that “the Joint Polar Research Station located at 79 degrees South latitude is a milestone in the Chilean polar research work that will facilitate research at the area and will allow to enhance the national scientific activity in deep Antarctica,” he said.

The Joint Polar Research Station, located at the Unión Glacier in the southern area of Ellsworth Mountains, at about 3,000 kilometers to the south of Punta Arenas and only at 1,000 km from the South Pole, received an important scientific expedition organized by the Chilean Antarctic Institute last November.

Dr. Raúl Cordero led the research team of the Department of Physics of Universidad de Santiago that was part of this expedition and that carried out valuable radiometric measurements in order to describe the optical properties of snow, particularly, its reflectance. The amount of energy reflected by the Antarctic surface is very important, because its variation has an impact on the balance of energy of the continent and, therefore, on the climate of the entire planet.

Dr. Cordero emphasizes that any variation in the current weather conditions in the Antarctica (for example, alterations caused by temperature changes) could spark off mechanisms able to accelerate the climate change; therefore, “eventual reductions in the radiation reflected by the Antarctica into space could contribute to global warming.” “This campaign will provide significant evidence for a better understanding of the Antarctic climatology and its role as a global climate agent,” he added.

The researcher also highlights other aspects of the scientific activity developed at the Unión Glacier. “In spite of the fact that Chile has been conducting research in the Antarctica for decades and has permanent bases on the Antarctic Peninsula, the scientific efforts in the Antarctic Circle (i.e., beyond 66 degrees South latitude) have been rather limited.”

Although researchers who belong to Dr. Cordero’s group were pioneers in the Unión Glacier area when they carried out several measurements in December 2012, the scientist points out that “the Joint Polar Research Station located at 79 degrees South latitude is a milestone in the Chilean polar research work that will facilitate research at the area and will allow to enhance the national scientific activity in deep Antarctica,” he concluded.

Translated by Marcela Contreras

Cross-laminated timber: the best option for buildings

Cross-laminated timber: the best option for buildings

  • Cross-laminated timber offers some extraordinary advantages for buildings: thermal insulation, seismic properties, good performance under fire and ecological sustainability are some of its properties. This was shown by the study led by Paulina González, professor at the Department of Civil Works Engineering. On May 18th, the book with the results of the study was launched.

     

    An innovating system for constructing buildings with more than two floors using cross-laminated timber (CLT) was proposed by an outstanding study led by Paulina González, professor at the Department of Civil Works Engineering.

    Cross-laminated timber is a three-layered panel made of lumber. The layers are laid in parallel formation and are “bonded together with special glues, at 90º to the layer below,” Paulina González says. “This gives the panel a high resistance, because wood has different mechanical and physical properties in the three directions,” she adds.

    This technology proposed by professor González has already been implemented in other countries; the difference is that, in Chile, it would be based on radiata pine, which forestry is highly developed in Chile.

    Professor González says that Chile is among the countries with the largest planted areas of radiata pine. “In addition to developing this project, we can give value added to our timber, try to solve the housing shortage of our country, and establish a system that would allow constructing buildings which structural elements, walls and slabs are made of this new product,” she adds.

    Better properties

    According to her research, constructing a cross-laminated timber-based building has many advantages over constructing with other materials, like reinforced concrete; For example, as it is a prefabricated product, it allows reduced construction times and a cleaner environment.

    “You bring the walls and slabs and assemble the building like a meccano set. It reduces construction times to a third, if compared to the construction of a reinforced concrete building,” she explains.

    Besides, cross-laminated timber has seismic properties. As reinforced concrete weighs as much as six times as cross-laminated timber, it generates higher seismic forces than the ones of a CLT-based building. “As it (a CLT based building) is assembled like a meccano set, with steel connectors, it gets so flexible that prevents its destruction,” professor González adds.

    Additionally, when constructing a building with CLT, less time is required, what can eventually lead to a solution for reconstruction works after natural disasters.

    “Construction times are reduced to a third. And so are the costs. The costs of structural work get reduced by 35%, and the total cost, after installations, to 10%,” she says with regards the economic benefits of CLT.

    Radiata pine, the base of the product studied by professor González, is ecologically sustainable. On the one hand, because its carbon footprint- the total amount of greenhouse gases that it emits- is very low; and on the other, because this tree grows very fast and it has extensively been planted in the country.

    “It is sustainable because carbon remains in the timber, and the carbon footprint is almost zero. Also, radiata pine grows very fast. This is why there are so many plantations in Chile.”

    A safe material

    “Depending on its density, when timber burns, it produces a charcoal layer in the outside that works as insulation to prevent fire and heat from entering its inner part,” professor González said, debunking the myth that this material is fragile.

    “It will last longer, even longer than a steel building. The steel building’s ability to resist fire is reduced to a half when it is exposed to 400º C. Timber remains stable for its charcoal layer,” she adds.

    Besides, timber has better acoustic insulation properties than reinforced concrete.

    CORFO Project

    The CORFO Project 12BPC2-13553 “Estudios de Ingeniería para Introducir en Chile un Sistema Constructivo de Rápida Ejecución para Edificios de Mediana Altura, Utilizando Elementos de Madera Contralaminada” lasted for two years; however, researchers at the Faculty of Engineering had conducted former studies on this subject matter. For this reason, after all this process, “we concluded that, considering the use of timber, CLT is the best system for a seismic country,” professor González says.

    “We have been the first ones in developing a project like this in Chile, with this system for medium-rise buildings,” she says.

    Professor González is optimistic about the future that TLC may have in our country due the experiences in other countries of the world. “In Vancouver (Canada), they are designing an eighteen-floored building and organizing a contest to build a 30-floored one,” she explains.

    Based on this study, the book ‘Sistema Constructivo en Madera Contralaminada para Edificios’ was produced. It includes former studies on this subject matter and an outstanding model of a four-floored CLT-based.

    The book was launched on May 18th, at 12:00 h, in a ceremony at the Salón de Honor of Universidad de Santiago, with the presence of President Juan Manuel Zolezzi Cid.

    Translated by Marcela Contreras

Universidad de Santiago was awarded funds through Anillos Research Projects in Science and Technology

Universidad de Santiago was awarded funds through Anillos Research Projects in Science and Technology

Universidad de Santiago was awarded 900 million Chilean pesos in the V version of the Contest Anillos Research Projects in Science and Technology. The contest was announced by the National Commission for Scientific and Technological Research.

 

Universidad de Santiago was awarded 900 million Chilean pesos for the execution of two projects in the context of the V version of the Contest Anillos Research project in Science and Technology 2014.

Thanks to the Associative Research Program (PIA, in Spanish), 17 projects will be funded nationwide, all of them top-class studies with international scope.

Dr Óscar Bustos Castillo, Vice President of Research, Development and Innovation, said that he was very pleased with the results, adding that “this type of project allows developing cutting-edge research that goes beyond our borders, and this is highly significant to contribute to our university’s internationalization.”

Dr Bustos highlighted that two of the projects that were awarded funding belong to consolidated research groups that, in the short term, could become research centers.

These study projects will be executed over three years and will allow us to face issues of national interest and global challenges, restating the role we play as a state and public university,” he said.

The projects

One of the projects is led by Dr Maritza Páez and Dr María Victoria Encinas, researchers at the Faculty of Chemistry and Biology, and Dr Jenny Blamey, researcher at Fundación Biociencia, who will address the problems generated by the spontaneous and undesirable damage of materials, known as corrosion or biocorrosion. The name of the study is “Functionalized surfaces: protection against corrosion and biocorrosion.”

They have the goal of replacing the anti corrosion procedures that involve chemical compounds of high toxicity, like chromates, and provide effective and eco-friendly solutions.

Dr Francisco Melo (surface mechanics), Dr José Zagal (electrochemistry) and Dr Manuel Azocar (bioinorganic chemistry) will participate in the project.

Dr Marcela Urzúa (polymers) and Dr Marco Flores (surface physics), both researchers at Universidad de Chile, will take part in the project too, as well as Dr Jenny Blamey and Dr Freddy Boehmwald (microbiology), of Fundación Biociencia, and Dr Mamie Sancy (corrosion-electrochemistry), of the Chilean Air Force.

The second project is led by Dr Raúl Cordero, researcher at the Department of Physics. This is the second time that he leads an Anillo Project (the first time was in 2010). This time, he seeks to better understand the effects of black carbon at the Andean cryosphere. 

Black carbon or soot is a pollutant generated by the use of fossil fuels in the cities that is carried by the wind over the Andean snow, changing its reflectivity and its melting speed. 

According to Dr Cordero, the study “is mainly focused on measuring the content of black carbon in the snow on the west side of the Andes.” For this purpose, they will conduct campaigns to collect samples and analyze their carbon content across the country, from Putre to the Patagonia.

With this data, “we expect to generate a map that shows the black-carbon content in the Andean cryosphere, highlighting the areas of impact. This information will be useful to evaluate the effect of black carbon on glaciers melting,” the researcher explained.

The project is really important, because the country’s long-term sustainability depends on the availability of water resources coming from the Andean snows. However, just like many cold regions of the planet, the Andean cryosphere has doubled the global warming rate. “Although green-house gas emissions seem to be the main cause of this problem, black carbon may be playing a role too,” he added.

“Universidad de Santiago is a leader in interdisciplinary studies that address different aspects of sustainability, what largely explains the successful results of our applications. This project involves an interdisciplinary team of physicists, chemists, glaciologists and engineers of six renowned Chilean universities. Besides, ten international institutions will collaborate with the project, like the German Aerospace Center (DLR, in German) and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC),” Dr Cordero concluded.

Nationwide results

The other 15 projects that were awarded funds belong to the following universities: five to Universidad Católica de Chile; four to Universidad de Chile; two to Universidad Técnica Federico Santa María and one to Universidad de La Frontera, one to Universidad Adolfo Ibáñez, one to Universidad Andrés Bello and one to Universidad Autónoma de Chile.

Translated by Marcela Contreras

New compound to prolong shelf life of dairy products

New compound to prolong shelf life of dairy products

  • The project led by Dr Silvia Matiacevich, professor at the Department of Food Science and Technology of the Technological Faculty, seeks to renew food industry by developing a compound with antimicrobial and antioxidant properties to prolong shelf life of dairy products. The project is funded through a Fondecyt Regular project 2016.

 

 

Nowadays, fresh, healthy and natural food consumption has increased, particularly, the intake of dairy products. According to the Chilean Bureau for Agricultural Studies and Policies (ODEPA; in Spanish), in 2013 the intake per capita was 146.5 liter, a national record in the country. 

However, these products require additives for their preservation that are not always natural and that do not allow a balanced and healthy diet.

In this context, Dr Silvia Matiacevich, professor at the Department of Food Science and Technology of the Technological Faculty; Dr Rubén Bustos, professor at the Department of Chemical Engineering of the Faculty of Engineering, and students at both units formed an interdisciplinary research team that will work on the study “Prolonged release of natural active compounds for improving shelf life of a dairy food matrix: Effect of structure obtained by different encapsulation process”. The project is funded by a Fondecyt Regular project (1160463) and it seeks to find a new active compound to preserve dairy products by means of nanotechnology. 

“We want to develop a new active ingredient with antimicrobial and antioxidant properties for dairy foods, in such a way that the compound has a prolonged release during storage, extending the product’s shelf life,” Dr Matiacevich says.

With this in mind, the researchers intend to study how the structure generated in this active ingredient- a powder developed through two different techniques- modifies its prolonged release in time in a real matrix,” she adds.

Food innovation and collaborative work

The objective of the study is to evaluate the effect of the structure obtained through “different encapsulation processes in prolonged release during storage of an encapsulated active agent,” in order to prolong the shelf life of a milk-based food matrix.

“By using encapsulation processes it is possible to obtain nanometric-sized particles, so the principles of nanotechnology are involved in this development,” favoring the compound prolonged release,” Dr Rubén Bustos, co-researcher of this study, says.

Food innovation research has increased worldwide. In Latin America, there are several research groups. For example, there are centers in Argentina, Colombia and Brazil, which professionals will collaborate in this project.

According to Dr Matiacevich, the main contribution of this study lies in that they will work directly with foods, so the study will not only provide basic knowledge but it will be applied to a real matrix.

For his part, Dr Bustos stresses the importance of their work with nanotechnology by saying: “At some point, microencapsulated ingredients were the greatest breakthrough, but now we will work with nanoencapsulated compounds, with much smaller and innovative structures.”

For the research team, the most important fact in relation to this project is that it involves the collaborative work of two departments of two different faculties of Universidad de Santiago de Chile. They also value the support of the Vice Presidency of Research, Development and Innovation, and the collaborative work with national and foreign universities. 

 

Translated by Marcela Contreras

Maqui berry to combat side effects of psychotropic drugs

Maqui berry to combat side effects of psychotropic drugs

  •  According to Dr Leonel Rojo, researcher at the Faculty of Chemistry and Biology, the use of Aristotelia Chilensis allows to reverse the problems caused by the use of psychotropic drugs, like obesity, diabetes and cardiovascular diseases.

 

 

Dr Leonel Rojo, researcher at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, found that people using antipsychotic drugs for 6 continuous months exponentially developed obesity, insulin resistance, dyslipidemia and cardiovascular diseases.

According to the Chilean National Institute of Public Health, clozapine and olanzapine have been the most commonly imported psychotropic drugs in Chile in the past ten years for their low cost and effectiveness for the treatment of psychosis or schizophrenia in adult patients and the treatment of attention deficit disorder, autism, Asperger syndrome and bipolar disorders in children.

However, the side effects that they produce alerted Dr Rojo, as he found that antidiabetic drugs did not help patients to overcome their problem. He started looking for solutions, and after testing a Chilean product in laboratory, in 2012 he found an answer: Maqui berry (Aristotelia Chilensis), a small tree that grows in the center and the south of Chile.

“Descubrimos en Estados Unidos, que uno de sus compuestos es fuertemente antidiabético, así que pensamos que el maqui puede prevenir la obesidad que es causada por antisicóticos y descubrimos que previene la acumulación de lípidos en las células en pacientes tratados con estos fármacos”, explica el experto en toxicología.

“In the USA, we found that one of the maqui components is a strong antidiabetic compound, so we thought that maqui could prevent the obesity caused by antipsychotic drugs. We found that it reduces lipid accumulation in the cells of patients who are treated with these drugs,” Dr Rojo explains.

Research team

Dr Rojo has an extensive scientific experience. His work has been recognized by the New York Society of Cosmetic Chemists and the American Society of Pharmacognosy, after he discovered an anti-aging technology based on Pouteria Lucuma bioactive compounds.

The project has the collaboration of Dr Ilya Raskin, of Rutgers University, New Jersey (USA); a research team of Universidad de Chile, led by Dr Pablo Gaspar; and the Hadassah Academic College of Jerusalem.

The study is called “Evaluation of Anthocyanins from Maqui Berry in the Prevention of Clozapine-Induced Hepatic Lipid Accumulation, Activation of SREBP1c Target Genes and Obesity” and it is funded by a Fondecyt Initiation Project in the field of psychotropic drugs and metabolism.

Current situation and expectations

Currently, Dr Rojo and his collaborators continue working in the laboratory at the Faculty of Chemistry and Biology of Universidad de Santiago. At this stage, they are trying to elucidate how the natural maqui components (called anthocyanins) prevent lipid accumulation and the metabolic problem associated to the use of antipsychotics.

 

The researcher expects to conclude his work by the end of 2017 with a continuity project that allows using the product in patients. Dr Rojo says that this project will benefit the country, because he thinks that the product would not be expensive; and it would also be good for national economy, because people who collect and sell maqui are eager to find new uses for it.

Today, the product is considered as a super fruit and it is mainly commercialized in the United States. Besides, there are already companies interested in the project and in getting involved in it.

 

Translated by Marcela Contreras

Water decontamination through electricity and solar energy

Water decontamination through electricity and solar energy

  • In the context of a series of seminars ran by the Department of Environmental Sciences of the Faculty of Chemistry and Biology, Dr. Ricardo Salazar informed about the scope of the research on treating waters contaminated by textile and pharmaceutical industry effluents through electrochemical methods.

In order to inform about the progress made by the Laboratory of Environmental Electrochemistry’s research group, Dr. Ricardo Salazar gave the presentation “Elimination of persistent organic pollutants in water by using electrochemical methods,” in the context of a series of seminars organized by the Faculty of Chemistry and Biology.

The activity gathered together academics and students who learned about the research being conducted at Universidad de Santiago with regards to eliminating organic compounds in water through advanced oxidation electrochemical processes. Particularly, the presentation referred to the Fondecyt project called “Degradation of dye-containing effluents from textile industry through electrochemical oxidation,” in which Dr. Salazar is the responsible investigator.

The objective of the study is to decontaminate waters that contain dyes and additives by means of electricity and solar energy, avoiding the use of chemical reactants.

“Today, we are working on the treatment of real samples of textile industrial effluents. To do so, we have built a pilot plant to treat larger volumes of contaminated water. We are also testing new electrodes for the process and we have extended the contaminant spectrum to pharmaceutical industrial effluents,” Dr. Salazar says about the status of the study, in which Dr. Julio Romero, from the Faculty of Chemical Engineering of Universidad de Chile, takes part as a co-investigator.

SERC Chile

Thanks to his achievements in this field, Dr. Salazar has accepted an invitation to take part as an investigator in a FONDAP project for the Chilean Solar Energy Research Center, SERC Chile, an agency that seeks to become a world leader in solar energy scientific research, with a particular emphasis in developing the potential of the Atacama Desert, Chile.

“I was invited as an associate investigator in the research line of “Solar Water Treatment”, which is coordinated by Dr. Lorena Cornejo Ponce, tenured professor at the Escuela Universitaria de Ingeniería Industrial, Informática y Sistemas (EUIIIS) of Universidad de Tarapacá. The idea is to contribute to the treatment of persistent organic pollutant-containing waters and their treatment through Solar photoelectro-Fenton degradation”, he says.

Translated by Marcela Contreras

Professor Max Chacón received English Prize for the 2011 best scientific publication

Professor Max Chacón received English Prize for the 2011 best scientific publication

  • His paper deals with details about how a person's exposure to carbon dioxide affects cerebral blood flow. The information was provided by experimental British patients, as part of a collaborative work with the University of Leicester.

Dr. Max Chacón, professor at the Department of Informatics Engineering, Faculty of Engineering, was awarded the 2011 Jack Perkins Prize by the Institute of Physics and Engineering in Medicine (IPEM) of England, for his publication "Non-linear multivariate modelling Hemodynamics of cerebral hemodynamics with Autoregressive Support Vector Machines.”

 The award, which consists of  £ 250, is given annually to the best paper published during the year in the Medical Engineering & Physics journal, after a review carried out by a specialized committee that evaluates aspects such as the novelty and impact of the research.

 Dr. Chacon thanked the award and noted that this type of survey research confirms the good work being done in this University. "This is an important recognition for us, especially because our paper in the area of cerebral self regulation did not belong to the field of biomechanics, the journal’s strongest line of research, which could have been  the most possible winner”, he said.

The winner added that "all the profits for this recognition are indirect: for example, increasing the bonds of cooperation not only with the university we work with (Leicester), but also with other foreign institutions".

Significant contribution to medicine

The awarded paper is part of a specific area called cerebral hemodynamics. Professor Chacón  is working with two other researchers: Claudio Araya, former student of Master’s degree at the U. of Santiago, and Ronney Panerai from the University of Leicester (England).

 The cerebral hemodynamics acquires vital importance, because the estimates of international organizations involved in the field of health in Chile indicate that by 2025 more people will die from brain strokes than heart attacks. It is believed that the blood flow would be strongly linked to vascular accidents and also with a number of diseases, such as Alzheimer's, arteriosclerosis (carotid artery, mainly), head trauma, vascular dementia and diabetes, among others.

"Cerebral strokes are rising very strongly in the country and the causes are unknown. One thing that causes brain damage is the stronger flow in the arteries. It is known that the brain has a flow control system, and this means that, although the pressure varies in the body, the flow is almost constant in the brain. If there is little flow, one loses consciousness and, conversely, if there is a lot of flow an artery breakdown happens, “Chacón explained.

This mechanism, which constantly generates blood flow into the brain, is what researchers try to model through a data–based nonlinear system. This publication addresses one of the topics related to cerebral hemodynamics, because of the data given by the English researcher who provided the information based on 16 healthy patients who breathe in air with a small fraction (5%) of carbon dioxide (CO2) through a mask. The aim was to know how breathing in this gas affects the regulation of the blood flow in the brain.

"We proved that it is possible to represent changes in the inhalation of CO2 in a person by using this nonlinear model and this has metabolic implications, for instance. We know that breathing in a fraction of CO2 produces changes, which are equivalent to those experienced by people with diabetes, i.e. a metabolic problem, and these problems affect the blood flow in the same way as CO2 does it, “the researcher said.

Prize

The IPEM is an institution dedicated to joining professionals from the physical sciences, clinical engineering, the academic world, the health services and the industry, in order to share knowledge and advances in science and technology. Since 2000, it gives the Jack Perkins Prize in honor of his first journal’s editor, who died in 2000.

 

Pages

Subscribe to RSS - Investigación