Investigación

Undefined

Researchers at Universidad de Santiago develop compound against neurodegenerative diseases

Researchers at Universidad de Santiago develop compound against neurodegenerative diseases

  • Dr Bernardo Morales Muñoz, director of the Laboratory of Neuroscience of Universidad de Santiago, is leading a project that seeks to reverse the effects of this type of disorder and enhance the memory and learning process. The chemical derives from the alkaloid sauroine synthesized by Huperzia saururus and it would allow to combat disorders like Parkinson’s disease and Huntington’s disease.

 

Neurodegenerative diseases are characterized by cellular aging and neuronal death. This has led scientists to study different possibilities to reverse or reduce their effects on patients. One of these studies is being conducted at the Laboratory of Neuroscience of Universidad de Santiago de Chile, as Dr Bernardo Morales Muñoz explains.

A research group is working on a chemical compound that helps to enhance the memory and learning process, which therapeutic use would reverse the effects of neurodegenerative diseases. “For example, in the case of Alzheimer’s, when there are little neurons left, this compound could activate them and counteract the memory loss,” Dr Morales says.

The compound is derived from sauroine, an alkaloid synthesized by Huperzia saururus, a plant popularly known as cola de quirquincho that grows in the Andes, in Argentina. Its benefits could be applied to other disorders like Parkinson’s disease and Huntington’s disease.

Side effects and environmental considerations

The study is part of a joint project with Universidad Nacional de Córdoba, Argentina, where they started modifying the compound chemically. “In Argentina, an excellent research group chose us to continue with the following research stage because we have specialized in memory and learning,” he says.

One of the main problems in the process to develop drugs is that large amounts of raw material are required, having an impact on the environment. “The idea is to isolate the compounds, understand them and be able to modify them chemically in order to enhance their effects. Then, we should be able to synthesize them, leaving behind the environmental concerns.”

Another aspect that should be considered is that people prefer more natural drugs, because they think that artificial drugs can have more serious side effects in comparison to drugs derived from natural compounds.

National and international patents

In Chile, Universidad de Santiago de Chile has already filed a patent request to protect the rights and future commercialization of the product. “We pretend to file patent requests abroad too, particularly in England, where some companies have shown interest in the project,” Dr Morales explains.

Although Dr Morales recognizes that more tests are required, the study has progressed well. “There are mouse models of Alzheimer, so the next step is to test the compound in them,” and then, the compound will be tested in human beings. The researchers think that they will produce an oral drug, as it would be more comfortable to use.

Translated by Marcela Contreras

Universidad de Santiago’s researchers selected by Corfo to get trained in Silicon Valley

Universidad de Santiago’s researchers selected by Corfo to get trained in Silicon Valley

  • Patricio Flores, PhD in Biotechnology, and Yu-Wen Tang, student at the Master´s program in Technology Management- Major in Biotechnology, both from the Faculty of Chemistry and Biology, were awarded a grant to develop a strategy for marketing an enzyme that has multiple benefits for diagnosing diseases.

As a result of the work they did for a doctoral dissertation and after being granted funds through the “Go To Market, de la Idea al Mercado” Contest organized by Corfo (the Chilean Economic Development Agency), the researchers will get trained in Silicon Valley, in the context of the third stage of the project “Developing a strategy for marketing a highly stable glutamate dehydrogenase (GLDH) enzyme.”

The project, which was developed under the guidance of Dr. Jenny Blamey, associate professor at Universidad de Santiago, proposes replacing the bovine GLDH enzyme with one from an Antarctic extremophilic microorganism (capable of resisting extreme conditions of temperature, pH, pressure, salinity, among others), which does not have the deficiencies of its predecessor. Its most common application is in the area of clinical laboratories where it is used for diagnosing hepatic and renal diseases

According to researcher Patricio Flores, “having discovered this new enzyme, glutamate dehydrogenase (GLDH), improves the half-life of five different types of diagnostic kits, as its thermal stability is higher than the one of the enzyme used today.” The academic stresses that “what is most important is that it also solves the problem of low half-life of the “old” diagnostic kits, preventing from discarding expired kits that have not been used, improving result reliability, lowering costs, reducing losses for companies and enabling a stock available to give a quick answer to market requirements.”

“The new enzyme is much more stable. It can be stored at room temperature, keeping more than 85% of its activity for 50 days. On the other hand, the bovine enzyme completely loses its activity under the same conditions,” Dr. Flores explains, regarding the results of this project that involves Universidad de Santiago and Fundación Científica y Cultural Biocencia.

Go To Market

“Go To Market, de la Idea al Mercado” is an initiative that seeks to identify research studies conducted at universities, technological centers and Chilean companies that have generated technologies that could potentially benefit the global market.

“The application process for the Corfo’s Go to Market Contest coincided with the last steps to finish my doctoral dissertation in which I developed the product prototype, that is to say, the GLDH enzyme from an Antarctic thermophilic microorganism,” Dr, Flores says.

At present, the project is at its third stage, which involves getting training at the Standford Research Institute (SRI), scheduling meetings with investors and interested clients and developing a marketing strategy to position the product in the market. These will be the activities that the two researchers will have while they stay in USA.

Translated by Marcela Contreras

CECTA will be in charge of certifying the quality of meals at schools of the Metropolitan Region

CECTA will be in charge of certifying the quality of meals at schools of the Metropolitan Region

  • The Food Science and Technology Research Center of Universidad de Santiago was awarded a public bid called by Junaeb to evaluate the quality and safety of food rations provided by schools at the Metropolitan Region. According to Claudio Martínez, the Director of the Center, “this shows that our accredited laboratories and our professionals are able to face challenges that involve high responsibilities.”

 

In December 2013, the laboratories of the Food Science and Technology Research Center of Universidad de Santiago (CECTA; in Spanish) were accredited by the National Institute for Standardization.

On August 1st, for the first time after this official certification, CECTA was awarded an important bid called by the National Board of Student Aid and Scholarships (Junaeb, in Spanish). As a result of this, CECTA will be in charge of analyzing the meals that are daily delivered to public schools, preschools and nursery schools in the Metropolitan Region.

Katy Yáñez, the Chief of the Physical and Chemical Analysis Laboratory and project leader, explained that samples of the food rations served for breakfast and lunch at 55 educational establishments of the Metropolitan Region and samples of 40 raw- material storage facilities will be analyzed over three months.

“At our Microbiology Laboratory and Physical and Chemical Analysis Laboratory (both with ISO 17025 accreditation), and together with an external laboratory that was subcontracted for the sample collection work, we will analyze the samples collected from food suppliers and schools in order to establish if these foods have the nutritional value and calories required and, in general, if they meet the microbiological parameters set by Junaeb,” she said.

A higher challenge

According to Claudio Martínez, Director of CECTA, the fact of being awarded this public bid called by Junaeb is “an important step for our University and for our Center, because, just to bid on this tender, being accredited as a high-scientific standard laboratory was required.”

“For a long time, CECTA has been working in strengthening its professional quality by implementing relevant policies and developing several improvements. Therefore, having been awarded this bid shows that our accredited laboratories and our professionals are able to face higher challenges that involve high responsibilities,” CECTA’s Director pointed out, adding that the following step “is just doing the high-quality scientific work that characterizes us.”


Translated by Marcela Contreras

Researchers study genes of Chilean native yeasts to optimize wine fermentation

Researchers study genes of Chilean native yeasts to optimize wine fermentation

  • The Regular Fondecyt Project “Mapping underlying genetic variants in nitrogen assimilation in different natural yeasts” led by Dr Claudio Martínez, researcher at the Food Science and Technology Research Center of Universidad de Santiago, proposes a new wine fermentation method that will not depend on nitrogen levels in the must. The study will last until 2019 and it involves the participation of researchers at the Department of Food Science and Technology of Universidad de Santiago and foreign experts from the CNRS in Nice (France) and the Instituto de Agroquímica y Tecnología de Alimentos in Valencia (Spain).

Yeasts are essential for wine fermentation as they turn grape sugar into alcohol. However, current industrial yeasts do not guarantee the completion of the fermentation process, resulting in economic losses for the national wine-making industry.

“It is estimated that about 40 per cent of the fermentation processes are interrupted, with a very strong impact on the industry. If you interrupt the process, thousands of litres will not ferment, so you need to spend more money to complete the process by adding more yeast or nutrients. This affects the wine properties and the quality expected,” Dr Claudio Martínez, director of the Food Science and Technology Research Center of Universidad de Santiago (Cecta, in Spanish), said.

To solve this problem, Dr Martínez and researchers at Universidad de Santiago are currently conducting the Regular Fondecyt Project “Mapping underlying genetic variants in nitrogen assimilation in different natural yeasts,” that will last until 2019.

“For yeasts to develop and work well, the abundant presence of some nutrients, like nitrogen, is required. As some musts have low levels of nitrogen, yeasts there do not grow well and the resulting product is not good. We will study the genes of Chilean native yeasts and foreign yeasts, searching for the ones that allow the yeast to assimilate nitrogen without considering its levels, and ferment the must efficiently,” he explained.

The yeasts described have been collected by the researchers at Cecta during the past decade, what allowed obtaining the most complete yeast strain collection of the country. With this register and through a previous Fondef Project, the Cecta developed a yeast strain, Fermicru XL, which has already been patented and commercialized worldwide.

“This new study has the purpose of identifying the genes with the features previously described to genetically improve industrial yeasts, something that has not been done before in Chile. First, we will search for the genes with the features we want in native yeasts and then, we will enhance an industrial strain, without using transgenic techniques,” he said.

The project will have the collaboration of Dr Amparo Querol of the Instituto de Agroquímica y Tecnología de Alimentos (IATA), in Valencia, Spain and Dr Gianni Liti, of the National Center for Scientific Research, (CNRS, in French), in Nice, France. Both centers will work on the genetic enhancement of yeast and the development of procedures for genetic investigation. Besides, they will allow access to their own collections of yeast native strains.

“They have yeast strains that they have collected from all over the world, representing more than 70 per cent of the world’s genetic varieties of yeasts. This is a very important genetic source that we will have available when conducting our study,” he added.

Dr Angélica Ganga, professor at the Department of Food Science and Technology; Dr Francisco Cubillos, researcher at Cecta; Dr Álvaro Díaz, of Universidad Católica de Valparaíso; and Dr Cristián Araneda, of Universidad de Chile, will also be part of the research team.

“It is important to study native yeasts. We assume that they have adapted to some environmental factors, so their properties can be potential solutions for the industry. This opportunity to study them allows us to progress in solving some issues, to develop genetic enhancement, and if everything goes as expected, to patent future yeasts based on native strains of our country,” Dr Martínez concluded.

Translated by Marcela Contreras

 

Researcher at Universidad de Santiago developed a new immunotherapy for cancer

Researcher at Universidad de Santiago developed a new immunotherapy for cancer

  • The new therapy involves the development of a vaccine that provides the immune system with the tools needed to “attack” cancer cells, improving the antitumour response of the body. The therapy was announced to foreign media correspondents accredited in Chile.

  • The study is funded through a Fondecyt Project and it is at preclinical stage. It considers a significant decrease of more than 70% in the overall cost of therapies for this disease.
  • The leader of the project, Claudio Acuña, Dr in Biomedical Sciences, researcher, and Head of the Department of Biology of our University, gave us some details on this new technology, which is applying for a patent in USA with the support of Corfo.
  • Dr Acuña said: “We are generating a quite effective therapy for cancer through which we could make immunotherapy more available to people. We are doing this in a university which is known for its social responsibility signature. In this context, I would like to highlight the talent of my students involved in this project.”

 

In order to optimize cancer therapy and contribute to public health in our country, an innovative and significant treatment developed at Universidad de Santiago has recently been presented.

This project involves the development of a vaccine that will allow destroying cancer cells in the body by enhancing its immune response.

This scientific development- funded by the National Fund for Scientific and Technological Development, Fondecyt- considers a significant decrease of more than 70% in the overall costs of cancer therapies and it has shown an efficacy of 50%.

Dr Claudio Acuña, Head of the Department of Biology of Universidad de Santiago, is leading the project. “We want to have a vaccine available to protect us from the disease, just like in the vaccination process for measles and other diseases when we are children. In the case of cancer, our idea is to get people vaccinated so that they are able to eliminate cancer cell in their bodies, he said.”

Quality of life

According to the researcher, the project “Seeks to improve the quality of life of patients in the long term and generate a supplementary therapy to conventional treatments to resist cancer in a non-conventional way, which is currently treated with chemotherapy.”

“We have completed the preclinical stage (trials in living animals) which showed that the vaccine does protect from the disease. The next step is the clinical phase, in which it will be tested in human subjects. There was not any negative effect on animals, so we could extrapolate that there will be not any effect on patients,” he added.

“The ultimate goal is to generate a vaccine for people with cancer that will allow enhancing their immune response to tumours,” he said.

We are generating a quite effective therapy for cancer in which we could make immunotherapy more available to people. We are doing this in a university which is known for its social responsibility signature. In this context, I would like to highlight the talent of my students involved in this project,” the scientist said.

 

“We were able to make it because the University enables, favours and promotes these innovation processes, besides providing the confidence to conduct high-level research,” he added.

 

Dicyt project

Dr Acuña’s meeting with foreign media correspondents was in the context of the activities of a Dicyt Public Opinion Project of Universidad de Santiago, led by Gabriela Martínez Cuevas, professor at the Department of Journalism.

 

Professor Martínez highlighted the interest of Fundación Imagen de Chile in contributing to promote the significance of this study among a group of accredited correspondents in Chile.

“Due to the strategic partnership that we developed with Fundación Imagen de Chile last year in a similar project, we have been able to arrange the first of a series of conferences with foreign accredited correspondents, during 2015,” professor Martínez said.

“This body has the purpose of managing the “nation branding”, so we have joined efforts to strengthen our “U de Santiago brand” around the world through our scientists,” she added.

Gabriela Martínez, who is also Director of the Communications Department and the institutional radio station said: “Today, the interest of the international press for learning about this study led by Dr Claudio Acuña was evident, and he insisted on the importance of the contribution made by the young researchers that he is training.”

She said: “There were correspondents of all the agencies in Europe, China and Latin America. We expect to see how they inform the world about this new contribution made by our state and public University, which is committed to the country progress and gives solutions to urgent demands beyond our borders. This was specifically demonstrated with this cancer vaccine.”

The project- which is at its preclinical stage- is based on effects of Polymixin B. It has already shown its first results in lymphoma, melanoma and breast, with an effectiveness of almost 50%. Besides, it is worth to mention that this technology could decrease the cost of current traditional cancer therapies by up to 70%.

With the support of the Chilean Economic Development Agency (Corfo, in Spanish), this technology is in the patenting process both in Chile and USA, to then continue to the clinical stage and to exporting the treatment.

Fundación Imagen de Chile

According to its web page, Fundación Imagen de Chile is an autonomous institution funded by public resources, created in 2009, with the purpose of coordinating and organizing the efforts to promote the image of Chile abroad.

Its responsibility is to mange the “nation branding”, by coordinating the work of the main sectors that contribute to build this image, such as culture, sports, exportations, investments, tourism and international relations, among others. For this purpose, the foundation develops strategic partnerships with public and private agents to coordinate the image of the country and actively position the distinctive features of our identity.

Translated by Marcela Contreras

Researchers analyzed relationship between fish stress and losses in salmon farming industry

Researchers analyzed relationship between fish stress and losses in salmon farming industry

  • The study suggests that stress in fish may be causing economic losses for the country due to its impact on the production of salmon farming industry.

According to the Chilean Undersecretariat for Fishing and Aquaculture’s report of October 2015, exports last August reached 93 different countries, likes USA, Japan, Brazil, Rusia, China and others.

The importance of this strategic productive sector to Chile's economy, led Dr Claudio Acuña Castillo, Head of the Department of Biology and researcher at the Aquaculture Biotechnology Center (CBA, in Spanish) and his colleagues at Universidad de Santiago and other institutions, to conduct a literature review to understand the stress-generating mechanisms in fish, in comparison to mammals. 

The analysis entitled Neuroendocrine mechanisms for immune system regulation during stress in fish was published on the Fish and Shellfish Immunology journal. The article has had a high impact on the scientific community and has been cited in other scientific works, allowing to go deeper in an insufficiently studied subject. “It has contributed to understand some aspects of stress in fish and to help other researchers who are interested in the same subject,” Dr Acuña said.

According to the researcher, major causes of stress among farmed fish are overcrowding, relocation, vaccines and transitions between freshwater and saltwater. The latter process happens normally in nature, but in productive contexts, it causes stress and affects the immune system of fish.

Chronic stress and acute stress

When analyzing stress in fish, Dr Acuña emphasizes that we must consider that fish are not mammals, therefore, they have a different behavior. They have different regulation mechanisms, different anatomy and a lonely life, as they are not gregarious animals.

All living organisms need some stress to develop. “Chronic stress is dangerous and harmful. When it becomes permanent, it affects the immune system. However, acute stress is necessary and useful, as it contributes to decision-making in conflict situations,” he explained.

When stress becomes chronic, it can be perceived in different ways. “Fish show physiological and behavioral changes, aggressiveness, and, sometimes, loss of appetite and increased susceptibility to contagious diseases,” he said.

Impact on aquaculture production

According to Dr Acuña, “It is highly probable that stress in fish may be having an impact on the production losses of salmon farming industry. When stress is too much, fish become susceptible to sea lice, for example. So, when all the produced fish die, as it is happening now, maybe there are not only genetic causes but stress-related factors.”

The researcher is also very worried about the side effects of production losses: lack of jobs and unemployment. He thinks that, if we begin to understand the process, we will be able to provide solutions. 

Besides, Dr Acuña expects to reduce the stress effects in fish by using natural solutions, like plants or natural elements.

The article was also led by Dr Ricardo Fernández, researcher at the Faculty of Biological Sciences and the Faculty of Medicine of Universidad Andrés Bello. Dr Gino Nardocci, Dr Cristina Navarro and Dr Paula P. Cortes, of Universidad Andrés Bello, and Dr Mónica Imarai, Dr Margarita Montoya, Dr Beatriz Valenzuela and Dr Pablo Jara, researchers at the Faculty of Chemistry and Biology and the CBA of Universidad de Santiago, collaborated with the study.

Translated by Marcela Contreras

Researchers at Universidad de Santiago develop innovative LED communication device for underground mining operations

Researchers at Universidad de Santiago develop innovative LED communication device for underground mining operations

  • The system will allow sending text, audio and video messages over long distances and at high speeds in underground mining operations. The project is led by Dr Ismael Soto, director of the Getic Laboratory of the Department of Electrical Engineering, and Dr Carolina Lagos Aguirre, alternate director of the project.

 

 

The system consists of a new device about the size of a cell phone that will enable good communications in underground mining operations by sending text, audio and video messages over long distances and at high speeds. 

Tech-Lifim (communication technology through visible light in mining operations) is a LED light-based device that transmits and decodes data through light pulses. The project is one of the research works conducted by the Department of Electrical Engineering of Universidad de Santiago de Chile.

The study is being developed by the Getic Laboratory of Universidad de Santiago (which is focused on digital signal processing for wireless communications), led by Dr Ismael Soto and Dr Carolina Lagos Aguirre, with the participation of graduate and undergraduate students at the university.

Exploring new needs

The project was started in 2010, when links were established with the Chuquicamata Division (the largest open pit copper producer in the world) of de Chilean’s National Corporation of Copper (Codelco, in Spanish), with the purpose of conducting studies on copper mining. “We gathered information about their needs and one of the issues they mentioned was the lack of communication devices, particularly for underground mining operations,” Dr Lagos says. “They asked us to develop a device able to transmit data at high speed and under adverse conditions, like high temperature, high humidity, dust and smoke.”

The research team established a strategic partnership with the company Control & Logic and started to work on the device. For a year and a half, they have continued with the research work, performed some tests and given presentations in Chuquicamata. “The device can be placed on the workers’ helmets, on underground tunnels’ walls and on trucks, to guarantee a simultaneous communication,” she says.

Global impact

According to the researchers, the system, which is currently at the production stage, is very efficient and meets the workers’ safety requirements.

Universidad de Santiago de Chile has already filed a patent request in Chile for this product. The next step will be filing a request abroad, because of a global underground mining project led by Codelco that will be started in 2019, based on the systems being implemented in Chuquicamata now,” Dr Soto explains.

In this context, they have created a company supported by the Innovo Usach business incubator. “We have the goal of placing the product in the market and start its commercialization in January 2017. Although we have worked with Chuquicamata for now, the device will be available for everyone who needs it,” the researcher says.

Other studies

This communication device is an example of the many studies that this research team intends to conduct. “We are also developing a lighting system for underground mining operations that will be available in the years to come,” Dr Soto says.

Besides, the research team is working on other projects in collaboration with foreign institutions like Northumbria University (England), the Oil and Gas University of Ploiesti (Romania) and the University of Lorraine (France).

Translated by Marcela Contreras

Food protective film is developed using local byproducts

Food protective film is developed using local byproducts

  • Universidad de Santiago’s interdisciplinary research team, led by Dr. Silvia Matiacevich from the Technological Faculty, is focused on developing an edible film that could increase the shelf life of fresh foods by 30%.

Improving the way of preserving foods has been a permanent concern in food industry. This is the reason why packaging is essential for the quality and shelf life of the product. But this packaging should be in harmony with the environment.

In light of this situation, a sustainable alternative for food packaging has been developed: food covering edible films, which are being widely used and have become a world trend nowadays. At Universidad de Santiago, an interdisciplinary research team is trying to replicate this development, giving value added to different national byproducts.

This initiative will be viable thanks to the Associative Dicyt Project called “Bioactive Coatings for Foods”, which gathers together experts from different faculties of the University.

“We will use food industry byproducts which are considered as dispensable or waste material. We are going to give them a value added by adding antioxidant and antimicrobial components to them in order to increase the shelf life of fresh food products,” Dr. Daniel López says.

Academics from three different faculties gathered for this purpose: Dr. Rubén Bustos, from the Faculty of Engineering (Department of Chemical Engineering); Dr. Diego Venegas and Dr. Marlén Gutiérrez, from the Faculty of Chemistry and Biology (Department of Materials Chemistry); and Dr. Daniel López and Dr. Silvia Matiacevich, from the Technological Faculty (Department of Food Science and Technology), being Dr. Matiacevich the leader of the project.

During the two years scheduled for the project, the researchers plan to study the synergistic effect of this combination of products and they expect to increase food shelf life by over 30%.

Interdisciplinarity

Most of the academics related to this project are part of a larger group created by the end of 2013 called Indi, Asociación de Investigadores por el Desarrollo e Interdisciplinariedad of Universidad de Santiago de Chile, a group of researchers that promotes development and interdisciplinarity at the university.

“All of us have participated in some of these initiatives at some point, seeking for this interdisciplinarity. This is how we have met other people and created contacts. What is good is that more than just admiring the work of others, we have the real possibility of conducting studies together. For this reason, we value this type of projects, as they promote the integration and interdisciplinarity that define a university,” Dr. Matiacevich says.

Translated by Marcela Contreras
 

Solutions for optimizing wine making industry processes

Solutions for optimizing wine making industry processes

  • One of the most difficult procedures in the wine making industry around the world is cleaning and removing the remaining marc from the traditional fermentation vats. Through a project funded by Corfo’s Innova Chile, Dr. Lucio Cañete, together with professors Andrés Pérez de Arce and Héctor Barrera, of the Technological Faculty, are working on the design of devices to make this task easier, providing a solution both safe for workers and economical for the industry.


 
Andrés Pérez de Arce and Héctor Barrera, together with Dr. Lucio Cañete, the three of them professors at the Technological Faculty, are analyzing the technological viability of a device to solve one of the most complex problems for the wine industry: the cleaning of the traditional vats where the must is fermented.

Up to now, the fermentation process occurs in huge steel tanks that are filled up with crushed grape juice that stays there for a week or two, until the must is removed.

As the marc - the solid residue of seeds, skins, stalks and other impurities- remains in the tank, getting it clean before using it again is a problem for the industry, because it means that a worker has to go inside the vat through a lateral hatch, what puts his health at risk because of the toxic gas build-up in this dark and damp environment.

This is one of the most required works by the wine industry but with the least supply of workers due to the hostile work conditions; that is why companies usually offer additional bonuses to attract workers, but this is still not enough.

World problem

For this reason, Professors Lucio Cañete and Héctor Herrera, of the Department of Industrial Technologies, together with Professor Andrés Pérez de Arce, of the Department of Agrarian Management of the Technological Faculty, were awarded funds through Corfo’s InnovaChile for the project Extractor de Residuos Cohesivos Desde Medianas y Grandes Cubas Viníferas, code 13IDL1-25426 (Cohesive Residues Extractor for Medium and Large-sized Wine Making Tanks), in order to develop a device to solve this problem.

“The problem affects wine making not only at a domestic level, but worldwide,” Professor Cañete explained. Although some wine producers have vats than can be turned upside down to facilitate the removal of the marc, they are very expensive, so most companies use the traditional steel or concrete tanks.

After studying different possibilities, Professors Cañete, Barrera and Pérez de Arce decided to design a device to vacuum the marc without destroying it (as it is sometimes pressed again) and without needing a worker to enter the vat.

In a few days, the researchers should deliver the first progress report. They received the funding last April and it considers the creation of a test prototype; however, the researchers have already tested their proposal in wine producing companies.

A few weeks ago, they presented the idea in the conference of the Asociación Nacional de Ingenieros Agrónomos Enólogos de Chile (National Association of Oenologist- Agronomical Engineers of Chile), held in Molina. “We had a good response, because it is a real problem for the wine industry. Our solution seeks to reduce the workers’ health risk and to optimize the available time of the vats to make the most of the harvest time,” Professor Pérez de Arce said.

Today, the project is at an initial stage of development, testing the hypothesis to model the equipment and further creation of the prototype. The most advanced methods in this process are leading to ripper-vacuum cleaner-like and Archimedes’ screw-like solutions. In both cases, the device will be introduced in the tank through the hatch, but the worker would have the possibility of controlling it from the outside.


Translated by Marcela Contreras
 

Researchers at Universidad de Santiago find similarity between algae physiological functioning and human nervous system

Researchers at Universidad de Santiago find similarity between algae physiological functioning and human nervous system

  • Researchers at the Faculty of Chemistry and Biology of Universidad de Santiago discovered the existence of functional TRP ion channels in the marine alga Ulva Compressa that are similar to the ones present at the nervous system in mammals and humans. “At first, it was difficult to imagine that these channels could exist in a marine alga, especially when they exist in mammals but not in terrestrial plants,” Dr Alejandra Moenne, researcher at the Department of Biology, says.

 


TRP channels are cellular sensors that detect and respond to different environmental stimuli, like temperature changes, pain and taste, what makes them key to many physiological processes.

“At first, it was difficult to imagine that these channels could exist in a marine alga, especially when they exist in mammals but not in terrestrial plants,” Dr Alejandra Moenne, researcher at the Department of Biology, says.

“Before having these results, we found that copper stress activates voltage dependent calcium channels (VDCC) similar to the ones present at the central nervous system of mammals. So, how the activation of voltage dependent channels was possible? We thought that the activation of VDCC depended on the previous activation of TRP channels, something difficult to imagine in a marine alga,” the researcher explains.

These results mean a change in the way how the physiological functioning of marine algae - organisms that have been present on Earth for about a thousand million years- is understood. They were published by the journal Frontiers in Plant Science in the paper "Copper-induced activation of TRP channels promotes extra cellular calcium entry, activation of CaMs and CDPKs, copper entry and membrane depolarization in Ulva compressa.” 

The researcher explains that they not only found that “there are functional TRP channels that respond to copper but also that copper stress induces the release of amino acids and amino acid derived neurotransmitters similar to the ones released by human neurons. Even more, we have preliminary evidence that suggests that there is communication among different marine algae species through these molecules.”


Future research 

In terms of research and to give answers to the new questions, Dr Moenne says that she intends to apply for a Proyecto Anillo together with researchers Juan Pablo García-Huidobro (Universidad de Santiago), Claudio Sáez (Universidad de Playa Ancha) and Erasmo Macaya (Universidad de Concepción), in order to deepen the knowledge on the communication among green, red and brown marine algae.

“As algae release amino acids and neurotransmitters- and have TRP channels and voltage dependent channels- algae functioning would be more and more similar to neurons, but with a slower response in minutes or hours, instead of the milliseconds of the neurons response,” she explains.

The paper "Copper-induced activation of TRP channels promotes extra cellular calcium entry, activation of CaMs and CDPKs, copper entry and membrane depolarization in Ulva compressa" (that received the recognition of the Editor of the journal Frontiers in Planet Science) was written by the research team of this project: Melissa Gómez, Alberto González, Claudio Sáez, Bernardo Morales and Alejandra Moenne. It is available online at http://journal.frontiersin.org/article/10.3389/fpls.2015.00182/abstract 


Translated by Marcela Contreras

Pages

Subscribe to RSS - Investigación