Investigación

Undefined

Food protective film is developed using local byproducts

Food protective film is developed using local byproducts

  • Universidad de Santiago’s interdisciplinary research team, led by Dr. Silvia Matiacevich from the Technological Faculty, is focused on developing an edible film that could increase the shelf life of fresh foods by 30%.

Improving the way of preserving foods has been a permanent concern in food industry. This is the reason why packaging is essential for the quality and shelf life of the product. But this packaging should be in harmony with the environment.

In light of this situation, a sustainable alternative for food packaging has been developed: food covering edible films, which are being widely used and have become a world trend nowadays. At Universidad de Santiago, an interdisciplinary research team is trying to replicate this development, giving value added to different national byproducts.

This initiative will be viable thanks to the Associative Dicyt Project called “Bioactive Coatings for Foods”, which gathers together experts from different faculties of the University.

“We will use food industry byproducts which are considered as dispensable or waste material. We are going to give them a value added by adding antioxidant and antimicrobial components to them in order to increase the shelf life of fresh food products,” Dr. Daniel López says.

Academics from three different faculties gathered for this purpose: Dr. Rubén Bustos, from the Faculty of Engineering (Department of Chemical Engineering); Dr. Diego Venegas and Dr. Marlén Gutiérrez, from the Faculty of Chemistry and Biology (Department of Materials Chemistry); and Dr. Daniel López and Dr. Silvia Matiacevich, from the Technological Faculty (Department of Food Science and Technology), being Dr. Matiacevich the leader of the project.

During the two years scheduled for the project, the researchers plan to study the synergistic effect of this combination of products and they expect to increase food shelf life by over 30%.

Interdisciplinarity

Most of the academics related to this project are part of a larger group created by the end of 2013 called Indi, Asociación de Investigadores por el Desarrollo e Interdisciplinariedad of Universidad de Santiago de Chile, a group of researchers that promotes development and interdisciplinarity at the university.

“All of us have participated in some of these initiatives at some point, seeking for this interdisciplinarity. This is how we have met other people and created contacts. What is good is that more than just admiring the work of others, we have the real possibility of conducting studies together. For this reason, we value this type of projects, as they promote the integration and interdisciplinarity that define a university,” Dr. Matiacevich says.

Translated by Marcela Contreras
 

Solutions for optimizing wine making industry processes

Solutions for optimizing wine making industry processes

  • One of the most difficult procedures in the wine making industry around the world is cleaning and removing the remaining marc from the traditional fermentation vats. Through a project funded by Corfo’s Innova Chile, Dr. Lucio Cañete, together with professors Andrés Pérez de Arce and Héctor Barrera, of the Technological Faculty, are working on the design of devices to make this task easier, providing a solution both safe for workers and economical for the industry.


 
Andrés Pérez de Arce and Héctor Barrera, together with Dr. Lucio Cañete, the three of them professors at the Technological Faculty, are analyzing the technological viability of a device to solve one of the most complex problems for the wine industry: the cleaning of the traditional vats where the must is fermented.

Up to now, the fermentation process occurs in huge steel tanks that are filled up with crushed grape juice that stays there for a week or two, until the must is removed.

As the marc - the solid residue of seeds, skins, stalks and other impurities- remains in the tank, getting it clean before using it again is a problem for the industry, because it means that a worker has to go inside the vat through a lateral hatch, what puts his health at risk because of the toxic gas build-up in this dark and damp environment.

This is one of the most required works by the wine industry but with the least supply of workers due to the hostile work conditions; that is why companies usually offer additional bonuses to attract workers, but this is still not enough.

World problem

For this reason, Professors Lucio Cañete and Héctor Herrera, of the Department of Industrial Technologies, together with Professor Andrés Pérez de Arce, of the Department of Agrarian Management of the Technological Faculty, were awarded funds through Corfo’s InnovaChile for the project Extractor de Residuos Cohesivos Desde Medianas y Grandes Cubas Viníferas, code 13IDL1-25426 (Cohesive Residues Extractor for Medium and Large-sized Wine Making Tanks), in order to develop a device to solve this problem.

“The problem affects wine making not only at a domestic level, but worldwide,” Professor Cañete explained. Although some wine producers have vats than can be turned upside down to facilitate the removal of the marc, they are very expensive, so most companies use the traditional steel or concrete tanks.

After studying different possibilities, Professors Cañete, Barrera and Pérez de Arce decided to design a device to vacuum the marc without destroying it (as it is sometimes pressed again) and without needing a worker to enter the vat.

In a few days, the researchers should deliver the first progress report. They received the funding last April and it considers the creation of a test prototype; however, the researchers have already tested their proposal in wine producing companies.

A few weeks ago, they presented the idea in the conference of the Asociación Nacional de Ingenieros Agrónomos Enólogos de Chile (National Association of Oenologist- Agronomical Engineers of Chile), held in Molina. “We had a good response, because it is a real problem for the wine industry. Our solution seeks to reduce the workers’ health risk and to optimize the available time of the vats to make the most of the harvest time,” Professor Pérez de Arce said.

Today, the project is at an initial stage of development, testing the hypothesis to model the equipment and further creation of the prototype. The most advanced methods in this process are leading to ripper-vacuum cleaner-like and Archimedes’ screw-like solutions. In both cases, the device will be introduced in the tank through the hatch, but the worker would have the possibility of controlling it from the outside.


Translated by Marcela Contreras
 

Researchers at Universidad de Santiago find similarity between algae physiological functioning and human nervous system

Researchers at Universidad de Santiago find similarity between algae physiological functioning and human nervous system

  • Researchers at the Faculty of Chemistry and Biology of Universidad de Santiago discovered the existence of functional TRP ion channels in the marine alga Ulva Compressa that are similar to the ones present at the nervous system in mammals and humans. “At first, it was difficult to imagine that these channels could exist in a marine alga, especially when they exist in mammals but not in terrestrial plants,” Dr Alejandra Moenne, researcher at the Department of Biology, says.

 


TRP channels are cellular sensors that detect and respond to different environmental stimuli, like temperature changes, pain and taste, what makes them key to many physiological processes.

“At first, it was difficult to imagine that these channels could exist in a marine alga, especially when they exist in mammals but not in terrestrial plants,” Dr Alejandra Moenne, researcher at the Department of Biology, says.

“Before having these results, we found that copper stress activates voltage dependent calcium channels (VDCC) similar to the ones present at the central nervous system of mammals. So, how the activation of voltage dependent channels was possible? We thought that the activation of VDCC depended on the previous activation of TRP channels, something difficult to imagine in a marine alga,” the researcher explains.

These results mean a change in the way how the physiological functioning of marine algae - organisms that have been present on Earth for about a thousand million years- is understood. They were published by the journal Frontiers in Plant Science in the paper "Copper-induced activation of TRP channels promotes extra cellular calcium entry, activation of CaMs and CDPKs, copper entry and membrane depolarization in Ulva compressa.” 

The researcher explains that they not only found that “there are functional TRP channels that respond to copper but also that copper stress induces the release of amino acids and amino acid derived neurotransmitters similar to the ones released by human neurons. Even more, we have preliminary evidence that suggests that there is communication among different marine algae species through these molecules.”


Future research 

In terms of research and to give answers to the new questions, Dr Moenne says that she intends to apply for a Proyecto Anillo together with researchers Juan Pablo García-Huidobro (Universidad de Santiago), Claudio Sáez (Universidad de Playa Ancha) and Erasmo Macaya (Universidad de Concepción), in order to deepen the knowledge on the communication among green, red and brown marine algae.

“As algae release amino acids and neurotransmitters- and have TRP channels and voltage dependent channels- algae functioning would be more and more similar to neurons, but with a slower response in minutes or hours, instead of the milliseconds of the neurons response,” she explains.

The paper "Copper-induced activation of TRP channels promotes extra cellular calcium entry, activation of CaMs and CDPKs, copper entry and membrane depolarization in Ulva compressa" (that received the recognition of the Editor of the journal Frontiers in Planet Science) was written by the research team of this project: Melissa Gómez, Alberto González, Claudio Sáez, Bernardo Morales and Alejandra Moenne. It is available online at http://journal.frontiersin.org/article/10.3389/fpls.2015.00182/abstract 


Translated by Marcela Contreras

Researchers develop solar energy accumulator to dry agroproducts

Researchers develop solar energy accumulator to dry agroproducts

  • In order to reduce the effects of the day-night fluctuations of solar radiation, researchers at the Department of Chemical Engineering of Universidad de Santiago developed a low-cost accumulator that allows storing solar thermal energy and avoid interruptions of the drying processes of different agricultural products. The research team is led by Dr Alejandro Reyes and the study is called “Design and evaluation of a heat exchanger that uses paraffin wax and recycled materials as solar energy accumulator”.

 

Chile has high levels of solar radiation, particularly in the northern and central zones of the country. This makes our territory an ideal area for studying and developing new methods to use solar energy. 

In this context, Dr Alejandro Reyes published part of the results of his study in the Elsevier’s journal Energy Conversion and Management. The article is called “Design and evaluation of a heat exchanger that uses paraffin wax and recycled materials as solar energy accumulator.”

Through this study, Professor Reyes seeks to solve one of the biggest problems posed by solar thermal energy: its fluctuation between day and night. He has the goal of extending the use of solar energy to hours when it is not directly received.

Solar energy can be thermally or electrically stored in batteries, by means of photovoltaic panels. In thermal storage, solids or liquids can be heated and sensible heat is stored. However, Dr Reyes’ study is focused on the phase change, i.e., the use of a solid that melts when it is heated.

Paraffin wax

Paraffin wax, similar to the one used in candle making, was the best option for this study, as it remains solid below 56OC and, above this temperature, it changes to liquid.

The change in state of paraffin wax depends on energy input or output. “For a phase transition from solid to liquid, much energy is required, so we get it from the sun. And from liquid to solid, we need to take the energy inside out,” Professor Reyes explained.

In order to melt wax and transform it to liquid and accumulate energy, Dr Reyes designed a heat accumulator that works with low-cost materials, like soft drink cans. “We designed a device in which we put paraffin in a group of soft drink cans that we painted black. We put the cans inside a box, and we closed the upper face with a glass cover, facing the sun. The solar energy melts the wax and then a cold air flow is passed trough the cans and goes out as hot air,” he said.

However, this process has some drawbacks related to the low thermal conductivity of paraffin wax that makes more difficult sucking out the heat from the cans: when liquid paraffin wax starts getting solid inside the cans, the extraction of the energy remaining in the centre of the cans is very slow.

This problem was solved by embedding aluminium wool in the paraffin wax, doubling its thermal conductivity. Aluminium strips were also placed outside the cans to improve the energy transfer to the air.

Mathematical equations

Professor Reyes says that the empirical results are correlated with the models that they have been able to develop through mathematical equations.

“Evidently, if we build a device with more cans, the energy accumulation would be proportionally higher. We have another piece of equipment with 300 cans placed on the roof of the Department of Chemical Engineering that allows extending the drying process of agroproducts to up to five hours. We have the help of thesis students and experts in modelling and a piece of software that allows predicting the results of the equipment, based on its size and the environmental conditions,” he said.

Dr Reyes expects to replicate the energy accumulator and use it for different purposes. “On the roof, we have an accumulator made of cans, plus a standard solar panel, both connected to a dryer with a drying capacity of 25 kg of agricultural products. Up to date, we have dehydrated mushrooms, onion flakes, and sweet peppers, among others.”

As the process of drying agricultural products is slow, during the day the dryer uses the solar energy obtained through the solar panel, and then at night, when the solar radiation is null, the air for drying is heated in the energy accumulator and the drying time is extended to up to 5 additional hours.

“We seek to extend the drying process all night long, by using solar energy, in spite of the radiation fluctuations between day and night,” the researcher said.

Translated by Marcela Contreras

Researcher studies new nanotechnology-based method for detecting Hepatitis B

Researcher studies new nanotechnology-based method for detecting Hepatitis B

  • According to official statistics, in Chile there are 34,000 people infected by the HBV, which is transmitted through exposure to infectious blood or body fluids. Worldwide, 240 million people live with this disease. This is the reason why Dr Camilo García, professor at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, decided to study the feasibility of a more effective and economical method for detecting this disease, in the context of a Fondecyt Initiation project awarded in 2015.

Hepatitis B is an infectious disease caused by the hepatitis B virus (HBV) which affects the liver. It is transmitted through exposure to infectious blood or body fluids and it can cause both acute and chronic infections. Hepatitis B can be fatal and cannot be cured.

According to statistics provided by the World health Organization (WHO), 240 million people worldwide suffer from chronic Hepatitis B, which can develop into cirrhosis and liver cancer. In Chile, 34,000 people are infected by the HBV

In this context, and thanks to the funding provided by a Fondecyt Initiation project (11150434), Dr Camilo García, professor at the Faculty of Chemistry and Biology of Universidad de Santiago, seeks to develop a new method for detecting this disease.

Background

According to Dr García, he has an important reason for studying this disease. In Chile, there is a specific HBV genotype: genotype F.

“I decided to study Hepatitis B to explore a new field, because this is a terrible disease and the current detection methods are very expensive, in comparison to the one that we are studying. There is a type of Hepatitis B that has only been detected in Chilean people. So, it would be great to find a sensor that detects the strain that we want to identify,” he said.

“The human quality of the work team at the Faculty of Chemistry and Biology of Universidad de Santiago was another reason to conduct this study,” he added.

After completing the three-year project, he expects to have a new detection method that contributes to the patients’ well-being and comfort during medical procedures.

Methods

“We want to see if it is possible to develop Hepatitis B sensors based on electrochemiluminescence,” professor García explained.

Quantum dots –fluorescent nanoparticles- emit light when voltage is applied. This light signal can be absorbed by a DNA-binding molecule, like cationic porphyrins.

Dr García explains that the study will be based on the comparison between linear DNA sequences and molecular beacons for Hepatitis B virus to establish if the light signal is affected by the resonance, providing novel biosensors to detect the disease.

 

Translated By Marcela Contreras

Researchers study tellurium as a key element to renewable energies

Researchers study tellurium as a key element to renewable energies

 A research team led by Dr Claudio Vásquez Guzmán, professor at the Department of Biology of Universidad de Santiago de Chile, proved that Antarctic bacteria are able to resist tellurium when they are exposed to oxidative stress.

 

Dr Claudio Vásquez, professor at the Department of Biology of Universidad de Santiago de Chile, together with his research team, proved that Antarctic bacteria are able to resist tellurium when they are exposed to oxidative stress. 

Tellurium (Te) is one of the many elements in the Periodic Table. It belongs to the same chemical family as oxygensulfur, and selenium, which are considered essential to life. However, until now, we still do not know if this element has any biological function. For this reason, the research team of the Laboratory of Molecular Microbiology of the Faculty of Chemistry and Biology of Universidad de Santiago de Chile, led by Dr Claudio Vásquez, has studied this element for years, trying to understand the molecular basis of its toxicity.

Since 2013, Dr Vásquez and Dr José Manuel Pérez, of Universidad Andrés Bello, have worked together in the Regular Fondecyt Project N° 1130362 “Tellurite-resistant Antarctic bacteria: Unveiling new toxicant resistance mechanisms,” which was recently completed.

“The hypothesis of our project was the following: As bacteria living in the Antarctica are resistant and adapted to oxidative stress, they should be resistant to tellurite. The idea was to find super-resistant bacteria that could help to establish the usefulness of tellurium to the cell,” Dr Vásquez explained.

The idea of the project came from the observation of isolated samples collected from different places in the Chilean Antarctica. They visited the Prat and Escudero Antarctic Bases, Deception Island and Fildes Peninsula and travelled on the Almirante Óscar Viel ice-breaker of the Chilean Army, where they were able to find, isolate and describe microorganisms resistant to oxidative stress and tellurite.

Tellurium is primarily used in the manufacturing of solar cells. According to Dr Vásquez, “It is an essential part of photoelectric cells that capture sunlight and transform it into electricity.” This is the reason why this element is a potential source of energy. “Now we need to create a system to remove tellurium from the environment, because it is very scarce,” he added.

In Chile, tellurium is produced as a byproduct of the copper refining process. It settles as anode slime and it is not recovered. “If we store it and control it well, we could contribute to prevent its potentially toxic effect on the flora and fauna,” he said.

Dr Vásquez concluded by saying that Universidad de Santiago has been really important during the conduct of this study for its support and constant collaboration.

IV International Congress of Science, Technologies and Cultures: Call for symposium presentation proposals

IV International Congress of Science, Technologies and Cultures: Call for symposium presentation proposals

  • As in previous occasions, in this fourth version, Universidad de Santiago proposes to hold a great academic gathering to share works and foster an interdisciplinary dialogue.

The next International Congress of Science, Technologies and Cultures will be held at Universidad de Santiago between October 9th and 12th, 2015. Our University has decided to continue with this important initiative, focusing on three objectives: contributing to dialogue and exchange between different disciplines; encouraging the debate on intellectual work looking towards the future of Latin America and the world; and generating a big coordination movement involving people and institutions that produce and spread knowledge to develop intellectual productive clusters.

The congress will be held as a product of preexisting intellectual networks, with the purpose of strengthening and widening them, ensuring the projection of a civil intellectual society that shall rise as a voice in contemporary debates.

The organizing committee invites you to present symposium proposals for this important activity. The deadline for the reception of proposals is June 30, 2014, and they shall be sent to grancongreso2015@gmail.com.

For further information regarding registrations, proposals and activities, check http://www.internacionaldelconocimiento.org/documentos/2015/convocatoria-IV-congreso-ingles.pdf

Exploring possibilities for commercializing reconfigurated rice developed at the University

Exploring possibilities for commercializing reconfigurated rice developed at the University

The product, a particular type of rice, produced by a project of the Facultad Tecnológica in 2008, with the support of the Fundación para la Innovación Agrícola  (FIA), is in the process of obtaining its corresponding patent.

There was a high national and international impact in May 2008, because of this  new type of reconstituted rice obtained from by-products  of  the polishing process of this cereal, such as spikes, defective pieces, flour and others. The important finding is that it requires less time and only a quarter of water than the traditional rice usually used for cooking. It has also been developed with a variety of flavors, nutrients and fiber to make it competitive.


The leader of this project was Laura Almendares, researcher at the Department of Science and Food Technology, Facultad Tecnológica. She was supported by the Fundación para la Innovación Agrícola  and by  other researchers from the University and rice producers from Parral, in the Maule Region, and El Huique, in the O'Higgins Region.

Four years after this stage of research, Professor Almendares is now actively working in obtaining the corresponding patent for  her creation and in the generation of projects to achieve the commercialization of this innovative product.

In this context, the academic recently presented a paper in Brazil at the workshop "Potential and Qualities of Rice from the West Frontier area." This event brought together researchers, farmers and rice entrepreneurs from Santa Marta - where 80 percent of Brazil’s rice is produced- and   was organized by the Federal University of Pampa, with funding from the National Council for Scientific and National Development.

"With the support of Unipampa we generated contacts with businessmen with the aim of consolidating the business model of our rice, so that it can be produced industrially and enter the market" said the specialist Almendares on her visit to Brazil.

Efforts are also made in Chile. In this regard, this researcher of the Facultad Tecnológica explores different tools to market her product among consumers in a massive way, even at the Corfo level.

"It wasn’t easy because it’s unusual for a university to generate a patent for a product to be marketed (in a  massive way)", she said. However, she  recognizes that there is a large Chilean rice company interested in producing and distributing the rice created in the laboratories of our university. Thus, this kind of rice could be soon on Chilean and foreign supermarkets shelves.

Researchers at Universidad de Santiago develop an application to help people with Parkinson’s disease

Researchers at Universidad de Santiago develop an application to help people with Parkinson’s disease

  • A research team led by Dr. Pedro Chaná designed an application for computers and mobile devices that helps people with Parkinson’s disease to follow an exercise routine and contact with their attending team of physicians.
  • The researchers of this study that relates Psychology to Information Science are part of the Information Technology Innovation Center for Social Applications and the Center for Movement Disorders. Dr. Pedro Chaná said that this tool “facilitates patients’ rehabilitation, contributing to improve their quality of life.”

 

According to international data, there are about 40 thousand people with Parkinson’s disease in Chile, while about 2% of the world population suffers from this neurodegenerative disorder that affects the central nervous system and movement and, therefore, people’s quality of life.

In this context, researchers at our University developed an innovative application for computers and mobile devices that helps patients with their exercise routines.

By relating Information Science to Psychology, specialists of the Information Technology Innovation Center for Social Applications (Citiaps, in Spanish) and the Center for Movement Disorders (Cetram, in Spanish), both of Universidad de Santiago de Chile, designed the Rehabilitation Exercise Virtual Assistant (AVER, in Spanish).

This tool allows people with Parkinson’s disease to follow an exercise routine according to a calendar and to receive instructions from their doctors in their cell phones. At the same time, doctors will be able to monitor their patients’ progress and to communicate with them through texts, images and videos from their computers.

The principal investigator of the project and director of Cetram, Dr. Pedro Chaná, said that the application “facilitates patients’ rehabilitation, complements their workout routines and contributes to improve their quality of life.”

Dr. Chaná also said the AVER has already been implemented as a pilot project and is being evaluated in order to adapt the technology to users. “What follows is the field test, the last pertinent corrections and the implementation,” he added.

Besides, Dr. Chaná valued the work done together with young researchers of Cetram and Citiaps, “with whom we made up a multidisciplinary team and developed a different and very positive work culture.”

Contribution to patients’ quality of life

The Rehabilitation Exercise Virtual Assistant has been developed by a team mostly made up of young researchers. One of them, Álvaro Fernández (Citiaps), a post-doctoral researcher, shows himself “very pleased” with the work that they have done. Dr. Elena Herrera (Citiaps) shares his opinion, highlighting the contribution “to patients’ autonomy and quality of life” made by the application that they developed.

“Frequently, patients are not able to go to the physiotherapist on a regular basis or cannot afford it. This innovation will be of great help to them. Besides, it is a significant contribution to their autonomy, as they will be able to work out without needing to travel long distances or to interrupt their daily routines,” Dr. Herrera added.

The AVER tool developed at Universidad de Santiago is expected to undergo the last improvements to finally be implemented for the benefit of patients, the world of medicine and society in general.


Translated by Marcela Contreras

Study disproves Darwin’s hypothesis about colonization by invading species

Study disproves Darwin’s hypothesis about colonization by invading species

·         In 1859, Charles Darwin published the book “On the Origin of Species”, where he states that invading species with a high degree of evolutionary closeness to the invaded community (phylogenetic relationship), would be less likely to become established, because “struggle for survival” would be more intense between related species. However, experiments conducted by Dr Sergio Castro, researcher at the Faculty of Chemistry and Biology and CEDENNA, have shown something different.

 

“Many people have accepted Darwin’s hypotheses as incontrovertible facts due to his recognized status in science. However, many of these hypotheses lie on mechanisms that have not been evaluated. This is a common situation in science development: usually the observations made are tested afterwards,” Dr Sergio A. Castro, researcher at the Laboratory of Ecology and Biodiversity of Universidad de Santiago, says.

In order to test Darwin’s hypothesis, Dr Castro and his research team developed a Fondecyt project. In this context, their paper “Evaluating Darwin’s Naturalization Hypothesis in Experimental Plant Assemblages: Phylogenetic Relationships Do Not Determine Colonization Success” was published by the renowned journal PLOS ONE, currently the largest scientific journal in the world, with a high impact factor (Q1) for its citations.

“Different species can be introduced in an area and several of them can finally establish themselves as populations, as if they were native species, without depending on human action. These are considered naturalized species. In our experiment, we observed a colonizing plant in different vegetal communities. These communities had different degrees of phylogenetic relatedness with the invading species. If Darwin was right, a trend towards the establishment of the invading species would have been recorded, depending on the evolutionary relatedness. However, after three years, we evaluated the results and they did not support Darwin’s hypothesis,” Dr Castro says.

The experiment was conducted in Batuco (a place close to Santiago) and 15 species were selected. One of them, the native lettuce Lactuca, was used as a colonizing or invading species, while the other 14, like chamomile, broad bean, arugula, among others, were used as experimental assemblage communities. With these plants, five treatments were organized according to their different phylogenetic relatedness with respect to Lactuca. They showed that colonization did not depend on phylogenetic relatedness. 

“En nuestro estudio todas las plantas pudieron convivir, independiente de sus parentescos. Por esto, los resultados manifiestan que la hipótesis de Darwin no tiene un respaldo tan sólido o por lo menos no es tan general como él lo planteaba”, indica Castro.

“In our study, all plants were able to coexist, regardless of their relatedness. Therefore, the results show that Darwin’s hypothesis does not have a strong base or, at least, the hypothesis is not as generalized as he stated,” Dr Castro says.

The researcher has also evaluated Darwin’s naturalization hypothesis by analyzing the composition of Chilean flora and introduced exotic plants. This work not only disproved the hypothesis, but it yielded opposite results.

“We found that species from other environments can be introduced in Chile’s central zone and find relatives that survive well in this climate. These relatives can provide pollinators and seed dispersers, making naturalization more likely to happen, contrary to what is expected in Darwin’s hypothesis,” he says.

Having an impact on global change

In the past few decades, people have become more interested in knowing how the different human activities affect the environment. The focal point has been climate change, passing over other factors, like introducing foreign species, flora or fauna, in other places. These factors are considered as part of global change.

“Chile is a biogeographic island. It is surrounded by a mountain chain, a desert and an ocean; therefore its flora has evolved isolated for more than 180 years. However, in the past centuries some species have been introduced that are risky to native species,” he explains.

Chile’s central zone biogeography is so particular that it is considered one of the 35 biodiversity hotspots of the world. These places are characterized by a high level of species endemism, but at the same time, their preservation is in danger as a result of human impact.

“An introduced species can produce the extinction of a native one, damaging our biodiversity. Nowadays, our variety of exotic plants is wide if compared with the variety of our native flora. But, what can we do to prevent this situation? There is little we can do in a globalization context, but we can generate diagnosis to prevent some species from entering and becoming naturalized,” Dr Castro says.

Translated by Marcela Contreras

Pages

Subscribe to RSS - Investigación