Investigación

Undefined

Fondef awarded Universidad de Santiago about US$800,000 to develop applied research projects

Fondef awarded Universidad de Santiago about US$800,000 to develop applied research projects

  •  In the context of the second IDeA en Dos Etapas Contest of the Fondef Program of Conicyt, four projects of Universidad de Santiago with potential economical and social impact were awarded about US$800,000. 664 projects applied for the funding nationwide, but only 50 were selected.
  • For Dr Luis Magne, Head of the Technology Transfer Department of Universidad de Santiago, “The projects that were awarded funds represent the efforts made by our university to develop applied research projects that respond to the main problems of the country.”
  • Particularly, the funds will support the following projects: “Proyecto sensores Hall ultrasensibles para detecciones varias de la industria minera” (by Dr Dora Altbir); “Bases científicas-tecnológicas para generar una propuesta de regulación de envases plásticos reciclados post-consumo para su uso en contacto directo con alimentos” (by Dr María José Galotto); “Plataforma de apoyo a la gestión de emergencia y aplicaciones” (by Dr Mauricio Marín) y la “Investigación para la optimización de la producción de pellets hidrofóbicos de alta densidad energética a través de la carbonización hidrotérmica de diferentes mezclas de biomasa de relevancia nacional” (by Dr Luis Díaz).

 

Universidad de Santiago was awarded 551,662,728 Chilean pesos (about US$800,000) for the execution of four projects in the context of the second IDeA en Dos Etapas Contest of the Fondef (Fund for the Promotion of Scientific and Technological Development) Program of the National Commission for Scientific and Technological Research (Conicyt, in Spanish). These funds will contribute to scientific and technological research with potential economic and social impact.  

Khaled Awad, Director of the Fondef Program, highlights that in this second version, the IDeA en Dos Etapas Contest consolidates itself as a strong tool to support projects in different regions of the country.

“Fondef works to promote technological development based on scientific knowledge in all areas. This contest shows us this diversity and contributes to science and technology research work conducted all over the country,” he says.

For his part, Dr Luis Magne, Head of the Technology Transfer Department of Universidad de Santiago, says: “These results show, in the first place, the high competitiveness of local science.” “The projects that were awarded funds represent the efforts made by our university to develop applied research projects that respond to the main problems of the country,” he adds.

The funds awarded to the university will support four projects.

One of them is led by Dr Dora Altbir, who will develop ultra-sensitive HALL sensors for different detection works in mining industry.

Another project is led by Dr Mauricio Marín, who will develop a support platform for emergency managing and apps.

For her part, Dr María José Galotto leads a research group who will work on the scientific-technological bases to generate a proposal for regulating the use of post-consumer recycled plastic containers for direct food contact applications. 

Dr Luis Díaz will lead a study for optimizing the high-energy-density hydrophobic pellet production through hydrothermal carbonization of different biomass blends of national importance.

In this contest’s second call, 644 projects applied for the funds, almost 200 more than in the first version, but only 50 were selected nationwide. The projects are distributed in the following areas: Food (8), Fishing and Aquaculture (8), Energy (7), Manufacturing (6), Health (6), Social Sciences and Education (5), Mining Industry (3), Infrastructure (3), ICT (2) and Environment (1).

The selected projects will go into the Applied Science Phase, where I+D (Innovation and Development) projects are funded to validate proofs of concept, models or prototypes at small scale or under lab conditions.

Translated by Marcela Contreras

Researchers at Universidad de Santiago develop hydrogen-based technology

Researchers at Universidad de Santiago develop hydrogen-based technology

  • Dr Daniel Serafini and Dr Álvaro San Martín, both professors at the Department of Physics, have developed an innovative solution that allows to store energy as hydrogen. One of the advantages of this technology is that it is not intermittent as current non-conventional energy sources (NCES), like solar and wind energy. This project is a contribution of Universidad de Santiago de Chile to the energy industry.

 

An innovative technology to store energy as hydrogen is being developed by Dr Daniel Serafini and Dr Álvaro San Martín, both professors at the Department of Physics of Universidad de Santiago de Chile.

According to Dr Serafini, one of the advantages of this technology is that it is not intermittent as current non-conventional energy sources (NCES), like solar and wind energy.

Hydrogen is generated during off-peak periods via water electrolysis. Then, depending on the needs, electric power is generated using the hydrogen stored in an electrochemical device called fuel cell. This system is very efficient and is environmentally friendly, because hydrogen combustion only generates water vapour, free of greenhouse gases and particulate matter.

Storing energy as hydrogen is a better solution in comparison to lithium batteries. “We compete with lithium batteries and they are much more expensive and heavier and they have technological problems regarding their size, i.e., at equal size, they have a more reduced capacity,” Dr Serafini says.

According to the expert, with current battery technology, lithium reserves in the world “are enough to cover only 40% of the cars in the Unites States.”

It is also worth to mention that this solution is particularly attractive to settlements in remote areas that do not receive power supply from the interconnected grid system.

The researchers implemented a demonstration module at the Minera San Pedro mining camp, in Til Til (at the north of the Metropolitan Region), where the pilot project has been working since mid-2015.

The CLP150 million project has been funded by the Innova Chile program of the Chilean Economic Development Agency (CLP132 million) and Minera San Pedro.

Greater involvement of the private sector

For his part, Dr San Martín stresses that the project has been well received by the Government and that now, a greater involvement of the private sector is required. “In developed countries, different public and private programs to develop hydrogen technologies have been funded with millions of dollars for a long time,” he says.

State-run bodies in Chile have already recognized the importance of hydrogen in the future for a clean non-polluting public transport. Both researchers agree that this is an essential starting point. 

Target market

One of the benefits of implementing this type of technology in Chile is that we have enormous ENCS resources of all kinds (solar, wind, geothermal, hydroelectric and tidal power), but they are intermittent, so the use of hydrogen would be highly convenient. 

The researchers say that this project “is not targeted at large companies for now, but remote places, like small settlements or fishing villages away from interconnected grid systems, little mine sites and road construction zones, etc.”

They expect to fully implement the project by mid-2016. Although they acknowledge that it is necessary to make this technology more price competitive, they say that costs have significantly fallen in recent times due to the huge development of fuel cell vehicles.

 

Translated by Marcela Contreras

The project gathers 15 institutions of Chile, USA and Europe, like Cedenna, and seeks to develop, analyze and test new therapies for treating colorectal cancer by means of magnetic nanostructures. The initiative also has the purpose of promoting human ca

The project gathers 15 institutions of Chile, USA and Europe, like Cedenna, and seeks to develop, analyze and test new therapies for treating colorectal cancer by means of magnetic nanostructures. The initiative also has the purpose of promoting human ca

  •  The project gathers 15 institutions of Chile, USA and Europe, like Cedenna, and seeks to develop, analyze and test new therapies for treating colorectal cancer by means of magnetic nanostructures. The initiative also has the purpose of promoting human capital exchange, technology transfer and the creation of new knowledge.
     

15 organizations, including the Center for the Development of Nanoscience and Nanotechnology (Cedenna) of Universidad de Santiago de Chile, joined to form the Magnamed consortium and respond to the call by the EU’s research grant program that will fund the project for at least four years. Other members of the consortium are the Complutense University of Madrid, the University of the Basque Country, the University of California, San Diego and IMG Pharma. The goal of this group is to work in collaboration and find new methods to treat colorectal cancer using state-of-the-art magnetic nanostructures to directly target and destroy tumor cells and avoid the side effects of treatments like radiotherapy and chemotherapy.

“Nanotechnology has a strong impact on different aspects of daily life. Its applications are expanding and being increasingly enhanced, reaching fields like medicine, where the search for new cancer treatments has gained interest and raised expectations, as conventional therapies are still expensive and complex and their side effects leave deep marks in the body,” Dr Dora Altbir, director of Cedenna, says.

The challenge is to create nanometric-sized disc-shaped structures that can be introduced in the body to destroy malignant cells thanks to their magnetic properties, without affecting healthy cells. This type of therapy has been studied for a while, but elaborating magnetic nanoparticles that effectively interact with biosensors and which are not derived from biotoxic materials has made the European Union to promote international cooperation among universities, research center and laboratories around the world to find new solutions and reduce cancer mortality.

“For Cedenna, the fact of participating in this project represents an opportunity to contribute with a potential solution to one of the most catastrophic and fatal diseases, to learn, and to work in collaboration with different institutions. This will give us the possibility of transferring that new knowledge and share with other scientists,” Dr Altbir says. The center was already awarded funds to collaborate.

Selective treatment

An effective treatment at an early stage of the disease is key to reducing mortality in some types of cancer like colon or rectal cancer. The challenge in clinical trials lies in that cancer cells are difficult to detect because of low concentrations of tumor biomarkers, which become perceptible at advanced stages. But the most common treatments are aggressive and non-selective.

Magnetic nanoparticles bind to malignant cells, contributing to early cancer detection. However, as their application is limited, Magnamed will explore the potential of emerging technologies based on magnetic nanostructures, which design can result in a better response.

 

Translated by Marcela Contreras

International organization’s compendium on ICT and Education includes work by academic of Universidad de Santiago

International organization’s compendium on ICT and Education includes work by academic of Universidad de Santiago

  • The Latin American Network of Educational Portals included the work done by Dr. Juan Silva, director of the Center for Research and Innovation in Education and ICT (CIIET, in Spanish), in a publication that gathers together renowned Latin American experts in this field.

Professor Juan Silva Quiroz’ work was selected by the Latin American Network of Educational Portals (Relpe, in Spanish) to be included in a recently published compendium that gathers several papers and reflections on the use of technologies in the educational process. The name of the book is “Mirada Relpe: Reflexiones iberoamericanas sobre TIC y Educación” (Relpe’s view: Latin American reflections on ICT and Education), and it started to be developed in 2011.

Dr. Silva reflects on the relation between Information and Communication Technologies (ICT) and education policies, particularly in the incorporation of these ICT in the Early Teaching Training (FID, in Spanish) process, as he considers them a determining factor to improve the quality of education, by training professionals in this field and enabling them to understand these tools and implement them in the classroom.

Relpe’s initiative has the purpose of establishing a regional view on how technologies are understood in education.

In the same way, professor Silva highlights the international significance of this initiative, as it provides different points of view on this matter. “Two of us wrote about ICT in teacher training; other expert wrote about videogames and another one wrote on Personal Learning Environments (PLE), etc. It is then a wide variety of work subjects or problems about technology and education presented, referenced or argued by leaders in this field,” he said.

He also added that the book includes some subjects that should be addressed since university education, particularly, in teacher training.

Potential of ICT tools

Regarding the advantages of using collaborative tools like ICT, professor Silva said that most of the teachers, especially at university level, do not see the potential of ICT tools, in terms of having opportunities to share knowledge at a national and international level. Assignments and presentations, he explained, can be modified and improved and will always be available in Prezi, blogs and Wikis, for example, under the logic of Web 2.0.

He also said that these participative and collaborative models are very useful, especially in teaching, which is normally perceived as an individualistic work. “In the traditional model, the teacher presents knowledge and students receive it. On the other hand, in a collaborative model, the teacher acts as a facilitator, as a mediator, and students have an active role in their knowledge- building process,” he added

Nowadays, Dr. Silva is part of a commission set up by the Ministry of Education to address the inclusion of ICT in the training of future teachers, and soon he will publish a book about different experiences of using ICT in early teacher training in Latin American, thanks to a teaching innovation project of the Academic Vice Presidency and sponsored by the Ministry of Education’s Center of Education and Technology (CET, in Spanish).

Translated by Marcela Contreras
 

Researchers study nanoparticles to prolong the effect of cancer-fighting drugs

Researchers study nanoparticles to prolong the effect of cancer-fighting drugs

  • In order to develop more tolerable therapies, a research team at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile studies the use of biodegradable nanoparticles to increase the Adenosine Triphosphate (ATP) circulation time in the body to combat cancer.

 

In order to develop more tolerable therapies, a research team at the Faculty of Chemistry and Biology of Universidad de Santiago de Chile studies the use of biodegradable nanoparticles to increase the Adenosine Triphosphate (ATP) circulation time in the body to combat cancer.

The study is led by Dr Patricia Díaz, professor at the Faculty of Chemistry and Biology and is being developed in the context of the 2016 Fondecyt Post Doc Project (3160837) "Uso de nanopartículas con circulación prolongada para la administración de ATP en tratamientos anticancerígenos." Dr Díaz and her team will test new nanotechnology-based applications to deliver cancer-fighting drugs into the body.

She explains that any drug delivered in the body for therapeutic purposes requires a circulation time to play its therapeutic role.

Some molecules, like ATP, are quickly degraded, so high constant drug doses are required to be therapeutically effective and this is not beneficial for patients.

“As drugs are encapsulated in nanoparticles, the enzymes that metabolize them cannot bind to them. This is why they are protected against degradation. Consequently, drugs’ half-life is increased, prolonging its therapeutic efficacy,” she explains. 

Improved treatments

The advantage of using ATP as a cancer-fighting drug is that it has minor side effects if compared to other drugs. But ATP degrades very quickly when it is recognized by the enzymes in the body. Therefore, different drug administration methods are required, like the use of nanoparticles with biodegradable and biocompatible properties.

“For this reason, we want to encapsulate ATP into biocompatible nanoparticles to increase its half-life. We will also use other strategies to make them invisible to the immune system, so that they can circulate longer. The idea is to prevent them from binding to the cell and to avoid extracellular release of ATP. In this way, we expect to have a higher amount of drug available in the body for a prolonged anti-cancer effect,” she explains.

According to Dr Díaz, the main objective of the study is to test the effectiveness of ATP-carrying nanoparticles in cancer treatment. “I expect to demonstrate that nanoparticle-encapsulated drugs increase their bioavailability when compared with conventional administration methods. Besides, we also expect to analyze the potential synergistic effect of administrating ATP in combination with other drugs frequently used in cancer treatment.”

“This synergistic effect could destroy a higher number of cancer cells, benefiting patients with advanced cancer,” she adds.

Another advantage of this type of treatment is that, as it allows a sustained release of drugs in time, patients could receive the treatment once a week or every two or more weeks, depending on the drug encapsulation capacity and its circulation time,” she concludes. 

Dr Juan Pablo García-Huidobro, researcher at the Faculty of Chemistry and Biology, is also participating in the study, which is being conducted at the Pharmacology Laboratory.

 

Translated by Marcela Contreras



 

Universidad de Santiago opens new research building

Universidad de Santiago opens new research building

  • With a space of 2,755 m2, the five-floored building will be home to the Center for the Development of Nanoscience and Nanotechnology, the Aquaculture Biotechnology Center and the Soft Matter Center. The cost of the building construction amounted to about CLP 5,000 million.

 

 

In a context in which Chile only invests 0.39 of its GDP in research, the President of Universidad de Santiago de Chile, Dr Juan Manuel Zolezzi, highlighted the importance of this new space that will contribute to research and development in the country.

“This is one of the state-of-the arts buildings in Chile with regard to university research and it is an incentive for new researchers to continue innovating in key areas for the development of Chile,” he said. He added that Universidad de Santiago de Chile is a leader in technology transfer.

Senator Guido Girardi, who heads the Challenges for the Future. Science, Technology and Innovation Commission of the Upper House, valued the work done by public universities.

“These universities take charge of basic sciences on their own. Particularly, Universidad de Santiago has had the wisdom to connect basic sciences to the problems of the country and to generate innovation to solve these problems,” he said.

A few months ago, Dr Girardi visited the Center for the Development of Nanoscience and Nanotechnology (Cedenna, in Spanish) where he met with professionals in this significant research field. After the opening ceremony he congratulated the university on the new facilities.

The centers

Representatives of the centers that will occupy the new facilities expressed their satisfaction with the architectural configuration of the building that facilitates research development.

Dr Francisco Melo, Head of the Soft Matter Center that gathers together scientists in the fields of Physics, Chemistry, Biology and Engineering, said that the new space will offer endless opportunities for a better science development and for positioning the university at an international level.

For her part, Dr Dora Altbir, Head of the Cedenna, said that the possibility of bringing together scientists from different fields will allow a more active collaboration than the one that the university has now.

Eugenio Spencer Ossa, Head of the Aquaculture Biotechnology Center (CBA, in Spanish) said that the new building will allow to further scientific research and contribute to improve domestic industrial production, like salmon farming.

Architecture

The Rector Eduardo Morales Santos Research Building, with a total surface of 2,755.15 m2, is located in the central campus of the university. Its design is a geometric reinterpretation of the heritage buildings of the institution designed by the architects Héctor Valdés, Fernando Castillo Velasco, Carlos García Huidobro and Carlos Bresciani and built between 1957 and 1967. The building’s name is a tribute to the first democratically-elected university president after the dictatorship.

 

Translated by Marcela Contreras

New compound to prolong shelf life of dairy products

New compound to prolong shelf life of dairy products

  • The project led by Dr Silvia Matiacevich, professor at the Department of Food Science and Technology of the Technological Faculty, seeks to renew food industry by developing a compound with antimicrobial and antioxidant properties to prolong shelf life of dairy products. The project is funded through a Fondecyt Regular project 2016.

 

 

Nowadays, fresh, healthy and natural food consumption has increased, particularly, the intake of dairy products. According to the Chilean Bureau for Agricultural Studies and Policies (ODEPA; in Spanish), in 2013 the intake per capita was 146.5 liter, a national record in the country. 

However, these products require additives for their preservation that are not always natural and that do not allow a balanced and healthy diet.

In this context, Dr Silvia Matiacevich, professor at the Department of Food Science and Technology of the Technological Faculty; Dr Rubén Bustos, professor at the Department of Chemical Engineering of the Faculty of Engineering, and students at both units formed an interdisciplinary research team that will work on the study “Prolonged release of natural active compounds for improving shelf life of a dairy food matrix: Effect of structure obtained by different encapsulation process”. The project is funded by a Fondecyt Regular project (1160463) and it seeks to find a new active compound to preserve dairy products by means of nanotechnology. 

“We want to develop a new active ingredient with antimicrobial and antioxidant properties for dairy foods, in such a way that the compound has a prolonged release during storage, extending the product’s shelf life,” Dr Matiacevich says.

With this in mind, the researchers intend to study how the structure generated in this active ingredient- a powder developed through two different techniques- modifies its prolonged release in time in a real matrix,” she adds.

Food innovation and collaborative work

The objective of the study is to evaluate the effect of the structure obtained through “different encapsulation processes in prolonged release during storage of an encapsulated active agent,” in order to prolong the shelf life of a milk-based food matrix.

“By using encapsulation processes it is possible to obtain nanometric-sized particles, so the principles of nanotechnology are involved in this development,” favoring the compound prolonged release,” Dr Rubén Bustos, co-researcher of this study, says.

Food innovation research has increased worldwide. In Latin America, there are several research groups. For example, there are centers in Argentina, Colombia and Brazil, which professionals will collaborate in this project.

According to Dr Matiacevich, the main contribution of this study lies in that they will work directly with foods, so the study will not only provide basic knowledge but it will be applied to a real matrix.

For his part, Dr Bustos stresses the importance of their work with nanotechnology by saying: “At some point, microencapsulated ingredients were the greatest breakthrough, but now we will work with nanoencapsulated compounds, with much smaller and innovative structures.”

For the research team, the most important fact in relation to this project is that it involves the collaborative work of two departments of two different faculties of Universidad de Santiago de Chile. They also value the support of the Vice Presidency of Research, Development and Innovation, and the collaborative work with national and foreign universities. 

 

Translated by Marcela Contreras

Researchers at Universidad de Santiago develop hydrogen-based technology

Researchers at Universidad de Santiago develop hydrogen-based technology

  • Dr Daniel Serafini and Dr Álvaro San Martín, both professors at the Department of Physics, have developed an innovative solution that allows to store energy as hydrogen. One of the advantages of this technology is that it is not intermittent as current non-conventional energy sources (NCES), like solar and wind energy. This project is a contribution of Universidad de Santiago de Chile to the energy industry.

 

An innovative technology to store energy as hydrogen is being developed by Dr Daniel Serafini and Dr Álvaro San Martín, both professors at the Department of Physics of Universidad de Santiago de Chile.

According to Dr Serafini, one of the advantages of this technology is that it is not intermittent as current non-conventional energy sources (NCES), like solar and wind energy.

Hydrogen is generated during off-peak periods via water electrolysis. Then, depending on the needs, electric power is generated using the hydrogen stored in an electrochemical device called fuel cell. This system is very efficient and is environmentally friendly, because hydrogen combustion only generates water vapour, free of greenhouse gases and particulate matter.

Storing energy as hydrogen is a better solution in comparison to lithium batteries. “We compete with lithium batteries and they are much more expensive and heavier and they have technological problems regarding their size, i.e., at equal size, they have a more reduced capacity,” Dr Serafini says.

According to the expert, with current battery technology, lithium reserves in the world “are enough to cover only 40% of the cars in the Unites States.”

It is also worth to mention that this solution is particularly attractive to settlements in remote areas that do not receive power supply from the interconnected grid system.

The researchers implemented a demonstration module at the Minera San Pedro mining camp, in Til Til (at the north of the Metropolitan Region), where the pilot project has been working since mid-2015.

The CLP150 million project has been funded by the Innova Chile program of the Chilean Economic Development Agency (CLP132 million) and Minera San Pedro.

Greater involvement of the private sector

For his part, Dr San Martín stresses that the project has been well received by the Government and that now, a greater involvement of the private sector is required. “In developed countries, different public and private programs to develop hydrogen technologies have been funded with millions of dollars for a long time,” he says.

State-run bodies in Chile have already recognized the importance of hydrogen in the future for a clean non-polluting public transport. Both researchers agree that this is an essential starting point. 

Target market

One of the benefits of implementing this type of technology in Chile is that we have enormous ENCS resources of all kinds (solar, wind, geothermal, hydroelectric and tidal power), but they are intermittent, so the use of hydrogen would be highly convenient. 

The researchers say that this project “is not targeted at large companies for now, but remote places, like small settlements or fishing villages away from interconnected grid systems, little mine sites and road construction zones, etc.”

They expect to fully implement the project by mid-2016. Although they acknowledge that it is necessary to make this technology more price competitive, they say that costs have significantly fallen in recent times due to the huge development of fuel cell vehicles.

 

Translated by Marcela Contreras

Scientist works on mathematical model to prevent wooden structures from collapsing

Scientist works on mathematical model to prevent wooden structures from collapsing

  • Dr Erick Saavedra Flores, researcher at the Department of Civil Works Engineering of Universidad de Santiago de Chile, is studying new mathematical techniques to computer simulate the performance of wood at extreme ranges of deformation, cracking and ductile processes and its possible progressive collapse.

 

Wooden structures in a seismic country like Chile require constant inspection to check on its resistance in case of critical events such as earthquakes.

Dr Erick Saavedra Flores, researcher at the Department of Civil Works Engineering of Universidad de Santiago de Chile, is studying new mathematical techniques to computer simulate the performance of wood at extreme ranges of deformation, cracking and ductile processes and, eventually, in a progressive collapse.

Dr Saavedra explains that failures in wooden structures are divided into two groups: brittle and ductile failures. Both will determine the time before wood collapses. “Usually, structures fail abruptly, without previous notice. This type of failure is classified as ‘brittle’. However, at a local level, close to metal joints or fittings, wood fails in a “ductile” manner, i.e., it fails gradually in time. This latter type of failure is very common in very high buildings made of wood,” he says.

With the resources provided by a Fondecyt Regular project, Dr Saavedra will present a new model based on a mathematical technique called “homogenization”, which seeks to detect cracking and irreversible deformation processes at different spatial scales.

Worldwide efforts

“Achieving this goal will be a big challenge, because we require to extend the existing theory to incorporate the damage factor, i.e., degradation, loss of material stiffness and cracks into the multi-scale mechanical response of the material. In the past few years, big efforts have been made worldwide; however, predicting the mechanical performance of materials in this context remains to be a problem without a solution that is fully accepted by the scientific community,” he says.

He explains that he intends to incorporate this new material model to the advanced analysis of large-scale structures, because the big challenge posed by this goal is to computer simulate the progressive collapse of structures during seismic events.

In this regard, modeling this problem is extremely difficult as it involves extreme deformation processes, the interaction of elements that fall during the collapse process and their consequent fragmentation.

The project also considers experimental testing to validate the numerical predictions obtained during the study. Running these tests will be possible with the acquisition of a vibrating table for the Department of Civil Works Engineering.

As a final result of this study, the researcher expects to have material advanced models able to capture extreme deformation processes that allow to calculate ductility measures.

“I believe that the major impact my project may have is in the area of design and construction of buildings and large-scale structures. In the case of wood, particularly, it is possible to promote the use of radiata pine to construct tall buildings if we have a more precise knowledge of its performance during failures or eventual structural collapse,” Dr Saavedra explains. 

The study will be conducted in the context of the Fondecyt Regular project 2016 (1160691), “Advanced Modelling of Ductility and Damage in Mass Timber Structures by Computational Homogenization.”

 

Translated by Marcela Contreras

Study on lizards’ movements in granular environments could contribute to robotics

Study on lizards’ movements in granular environments could contribute to robotics

  • With the funding of a Fondecyt Postdoctoral Project 2016, Dr Baptiste Darbois, professor at the Faculty of Science of Universidad de Santiago, will be able to accurately determine how lizards move in granular soils in order to produce results that allow to create a robot able to move easily in different types of soil.

 

With the funding of a Fondecyt Postdoctoral Project 2016, Dr Baptiste Darbois, professor at the Faculty of Science of Universidad de Santiago, will be able to accurately determine how lizards move in granular soils in order to produce results that allow to create a robot able to move easily in different types of soil. This would mean a significant contribution to robotics.

Based on previous research that found that once lizards dive in the sand, they move by wriggling their bodies and not by using their legs, Dr Darbois will study the interaction between a vibrating elastic structure and the granular environment.

The Fondecyt Postdoctoral project (3160167) is called “Locomoción ondulatoria de nadadores suaves dentro de los medios granulares.”

Experimental challenge

The experimental challenge of the study is to control the movement of grains and the forces they undergo when lizards move. This would help to establish guidelines for developing robots able to adapt themselves to different environments. The way of moving of different animals has inspired engineers in this field.

“We expect the compression produced by lizards’ undulating movements in the desert’s sub-surface to help us to develop efficient robots by incorporating this mechanism,” Dr Darbois explained.

Likewise, professor Darbois intends to develop, in the long term, a robot based on the best features lizards show when moving in a granular environment.

“Through this project, we expect to define the optimal conditions: the dimensions, elasticity, frequency and amplitude of vibrations to move forward in waves through a granular environment,” the researcher said.

The relationship between lizards and the development of robots is not odd; on the contrary, it can benefit technological development and improve people´s quality of life. For example, it can be used in critical situations.

“With regard to its applications, developing robots able to efficiently move in granular environments could help to detect anti-personnel mines in the deserts and find people trapped under avalanches,” Dr Darbois concluded.

Translated by Marcela Contreras

Pages

Subscribe to RSS - Investigación